Atnaujinkite slapukų nuostatas

Introduction to Étale Cohomology Softcover reprint of the original 1st ed. 1994 [Minkštas viršelis]

, Translated by
  • Formatas: Paperback / softback, 186 pages, aukštis x plotis: 235x155 mm, weight: 454 g, IX, 186 p., 1 Paperback / softback
  • Serija: Universitext
  • Išleidimo metai: 28-Sep-1994
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540571167
  • ISBN-13: 9783540571162
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 186 pages, aukštis x plotis: 235x155 mm, weight: 454 g, IX, 186 p., 1 Paperback / softback
  • Serija: Universitext
  • Išleidimo metai: 28-Sep-1994
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540571167
  • ISBN-13: 9783540571162
Kitos knygos pagal šią temą:
Étale Cohomology is one of the most important methods in modern Algebraic Geometry and Number Theory. It has, in the last decades, brought fundamental new insights in arithmetic and algebraic geometric problems with many applications and many important results. The book gives a short and easy introduction into the world of Abelian Categories, Derived Functors, Grothendieck Topologies, Sheaves, General Étale Cohomology, and Étale Cohomology of Curves.

Daugiau informacijos

Springer Book Archives
Chapter 0 Preliminaries
1(22)
§1 Abelian Categories
1(8)
(1.1) Categories and Functors
1(2)
(1.2) Additive Categories
3(1)
(1.3) Abelian Categories
4(2)
(1.4) Injective Objects
6(3)
§2 Homological Algebra in Abelian Categories
9(8)
(2.1) ∂-Functors
9(2)
(2.2) Derived Functors
11(2)
(2.3) Spectral Sequences
13(4)
§3 Inductive Limits
17(6)
(3.1) Limit Functors
17(2)
(3.2) Exactness of Inductive Limits
19(1)
(3.3) Final Subcategories
20(3)
Chapter I Topologies and Sheaves
23(62)
§1 Topologies
23(8)
(1.1) Preliminaries
23(1)
(1.2) Grothendieck's Notion of Topology
24(1)
(1.3) Examples
25(6)
§2 Abelian Presheaves on Topologies
31(15)
(2.1) The Category of Abelian Presheaves
31(1)
(2.2) Cech-Cohomology
32(9)
(2.3) The Functors fp and fp
41(5)
§3 Abelian, Sheaves on Topologies
46(39)
(3.1) The Associated Sheaf of a Presheaf
46(4)
(3.2) The Category of Abelian Sheaves
50(4)
(3.3) Cohomology of Abelian Sheaves
54(2)
(3.4) The Spectral Sequences for Cech Cohomology
56(5)
(3.5) Flabby Sheaves
61(2)
(3.6) The Functors fs and fs
63(6)
(3.7) The Leray Spectral Sequences
69(4)
(3.8) Localization
73(2)
(3.9) The Comparison Lemma
75(4)
(3.10) Noetherian Topologies
79(2)
(3.11) Commutation of the Functors Hq(U, ·) with Pseudofiltered Inductive Limits
81(4)
Chapter II Etale Cohomology
85(94)
§1 The Etale Site of a Scheme
85(7)
(1.1) Etale Morphisms
85(1)
(1.2) The Etale Site
86(1)
(1.3) The Relation between Etale and Zariski Cohomology
86(1)
(1.4) The Functors f* and f*
87(3)
(1.5) The Restricted Etale Site
90(2)
§2 The Case X = spec(k)
92(3)
§3 Examples of Etale Sheaves
95(8)
(3.1) Representable Sheaves
95(5)
(3.2) Etale Sheaves of Ox-Modules
100(1)
(3.3) Appendix: The Big Etale Site
101(2)
§4 The Theories of Artin-Schreier and of Kummer
103(11)
(4.1) The Groups Hq(X, (Ga)x)
103(2)
(4.2) The Artin-Schreier Sequence
105(1)
(4.3) The Groups Hq(X, (Gm)x)
106(3)
(4.4) The Kummer Sequence
109(2)
(4.5) The Sheaf of Divisors on Xet
111(3)
§5 Stalks of Etale Sheaves
114(6)
§6 Strict Localizations
120(10)
(6.1) Henselian Rings and Strictly Local Rings
120(3)
(6.2) Strict Localization of a Scheme
123(2)
(6.3) Etale Cohomology on Projective Limits of Schemes
125(2)
(6.4) The Stalks of Rq f*(F)
127(3)
§7 The Artin Spectral Sequence
130(4)
§8 The Decomposition Theorem. Relative Cohomology
134(12)
(8.1) The Decomposition Theorem
134(7)
(8.2) The functors j! and i!
141(3)
(8.3) Relative Cohomology
144(2)
§9 Torsion Sheaves, Locally Constant Sheaves, Constructible Sheaves
146(11)
(9.1) Torsion Sheaves
146(5)
(9.2) Locally Constant Sheaves
151(3)
(9.3) Constructible Sheaves
154(3)
§10 Etale Cohomology of Curves
157(16)
(10.1) Skyscraper Sheaves
157(5)
(10.2) The Cohomological Dimension of Algebraic Curves
162(3)
(10.3) The Groups Hq(X, (Gm)x) and Hq(X, (μn)x)
165(3)
(10.4) The Finiteness Theorem for Constructible Sheaves
168(5)
§11 General Theorems in Etale Cohomology Theory
173(6)
(11.1) The Comparison Theorem with Classical Cohomology
173(1)
(11.2) The Cohomological Dimension of Algebraic Schemes
174(1)
(11.3) The Base Change Theorem for Proper Morphisms
175(1)
(11.4) Finiteness Theorems
176(3)
Bibliography 179(4)
Index 183