Atnaujinkite slapukų nuostatas

Introduction to Aerospace Materials [Minkštas viršelis]

4.50/5 (15 ratings by Goodreads)
  • Formatas: Paperback / softback, 600 pages
  • Išleidimo metai: 01-Jul-2012
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 160086919X
  • ISBN-13: 9781600869198
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 600 pages
  • Išleidimo metai: 01-Jul-2012
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 160086919X
  • ISBN-13: 9781600869198
Kitos knygos pagal šią temą:
The structural materials used in airframe and propulsion systems influence the cost, performance, and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering. Introduction to Aerospace Materials reviews the main structural and engine materials used in aircraft, helicopters, and spacecraft in terms of their production, properties, performance, and applications. The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and the casting, processing, and machining of aerspace metals. The next 10 chapters look in depth at individual metals including aluminum, titanium, magnesium, steel, and superalloys, as well as the properties and processing of polymers, composites, and wood.Chapters on performance issues such as fracture, fatigue, and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters. With its comprehensive coverage of the main issues surrounding structural aerospace materials, Introduction to Aerospace Materials is essential reading for undergraduage students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practicing aerospace engineers.
Preface xiii
1 Introduction to aerospace materials
1(14)
1.1 The importance of aerospace materials
1(1)
1.2 Understanding aerospace materials
2(2)
1.3 Introducing the main types of aerospace materials
4(7)
1.4 What makes for a good aerospace material?
11(2)
1.5 Summary
13(1)
1.6 Further reading and research
14(1)
2 Aerospace materials: past, present and future
15(24)
2.1 Introduction
15(4)
2.2 Brief history of aerospace materials
19(13)
2.3 Materials for the global aerospace industry
32(3)
2.4 Future advances in aerospace materials
35(2)
2.5 Summary
37(1)
2.6 Further reading and research
38(1)
3 Materials and material requirements for aerospace structures and engines
39(18)
3.1 Introduction
39(1)
3.2 Fixed-wing aircraft structures
40(11)
3.3 Helicopter structures
51(3)
3.4 Space shuttle structures
54(1)
3.5 Summary
55(1)
3.6 Further reading and research
56(1)
4 Strengthening of metal alloys
57(34)
4.1 Introduction
57(1)
4.2 Crystal structure of metals
58(2)
4.3 Defects in crystal structures
60(8)
4.4 Strengthening of metals
68(19)
4.5 Summary
87(1)
4.6 Terminology
88(1)
4.7 Further reading and research
89(2)
5 Mechanical and durability testing of aerospace materials
91(37)
5.1 Introduction
91(1)
5.2 Tension test
92(14)
5.3 Compression test
106(1)
5.4 Flexure test
107(1)
5.5 Hardness test
108(3)
5.6 Fracture test
111(2)
5.7 Drop-weight impact test
113(1)
5.8 Fatigue test
114(1)
5.9 Creep test
115(1)
5.10 Environmental durability testing
116(2)
5.11 Certification of aerospace materials
118(5)
5.12 Summary
123(3)
5.13 Terminology
126(1)
5.14 Further reading and research
127(1)
6 Production and casting of aerospace metals
128(26)
6.1 Introduction
128(1)
6.2 Production of metal alloys
128(6)
6.3 Casting of metal alloys
134(9)
6.4 Casting processes
143(6)
6.5 Summary
149(1)
6.6 Terminology
150(1)
6.7 Further reading and research
151(1)
6.8 Case study: casting defects causing engine disc failure in United Airlines flight 232
151(3)
7 Processing and machining of aerospace metals
154(19)
7.1 Introduction
154(2)
7.2 Metal-forming processes
156(5)
7.3 Hot and cold working of metal products
161(6)
7.4 Powder metallurgy for production of aerospace superalloys
167(1)
7.5 Machining of metals
168(2)
7.6 Summary
170(1)
7.7 Terminology
171(1)
7.8 Further reading and research
172(1)
8 Aluminium alloys for aircraft structures
173(29)
8.1 Introduction
173(2)
8.2 Aluminium alloy types
175(4)
8.3 Non-age-hardenable aluminium alloys
179(2)
8.4 Age-hardenable aluminium alloys
181(5)
8.5 Speciality aluminium alloys
186(2)
8.6 Heat treatment of age-hardenable aluminium alloys
188(9)
8.7 High-temperature strength of aluminium
197(3)
8.8 Summary
200(1)
8.9 Further reading and research
201(1)
9 Titanium alloys for aerospace structures and engines
202(22)
9.1 Introduction
202(3)
9.2 Titanium alloys: advantages and disadvantages for aerospace applications
205(2)
9.3 Types of titanium alloy
207(9)
9.4 Titanium aluminides
216(2)
9.5 Shape-memory titanium alloys
218(3)
9.6 Summary
221(1)
9.7 Terminology
222(1)
9.8 Further reading and research
223(1)
10 Magnesium alloys for aerospace structures
224(8)
10.1 Introduction
224(1)
10.2 Metallurgy of magnesium alloys
225(6)
10.3 Summary
231(1)
10.4 Further reading and research
231(1)
11 Steels for aircraft structures
232(19)
11.1 Introduction
232(2)
11.2 Basic principles of steel metallurgy
234(10)
11.3 Maraging steel
244(2)
11.4 Medium-carbon low-alloy steel
246(1)
11.5 Stainless steel
246(1)
11.6 Summary
247(2)
11.7 Terminology
249(1)
11.8 Further reading and research
249(2)
12 Superalloys for gas turbine engines
251(17)
12.1 Introduction
251(3)
12.2 A simple guide to jet engine technology
254(2)
12.3 Nickel-based superalloys
256(6)
12.4 Iron-nickel superalloys
262(1)
12.5 Cobalt superalloys
262(1)
12.6 Thermal barrier coatings for jet engine alloys
263(2)
12.7 Advanced materials for jet engines
265(1)
12.8 Summary
265(1)
12.9 Further reading and research
266(2)
13 Polymers for aerospace structures
268(35)
13.1 Introduction
268(2)
13.2 Aerospace applications of polymers
270(1)
13.3 Advantages and disadvantages of polymers for aerospace applications
270(1)
13.4 Polymerisation
271(5)
13.5 Thermosetting polymers
276(3)
13.6 Thermoplastics
279(4)
13.7 Elastomers
283(2)
13.8 Structural adhesives
285(3)
13.9 Mechanical properties of polymers
288(6)
13.10 Polymer additives
294(2)
13.11 Polymers for radar-absorbing materials (RAMs)
296(2)
13.12 Summary
298(1)
13.13 Terminology
299(2)
13.14 Further reading and research
301(1)
13.15 Case study; space shuttle Challenger accident
301(2)
14 Manufacturing of fibre-polymer composite materials
303(35)
14.1 Introduction
303(3)
14.2 Fibre reinforcements for composites
306(9)
14.3 Production of prepregs and fabrics
315(4)
14.4 Core materials for sandwich composites
319(2)
14.5 Composites manufacturing using prepreg
321(5)
14.6 Composites manufacturing by resin infusion
326(7)
14.7 Machining of composites
333(1)
14.8 Summary
334(1)
14.9 Terminology
335(1)
14.10 Further reading and research
336(1)
14.11 Case study: carbon nanotubes in composites
336(2)
15 Fibre-polymer composites for aerospace structures and engines
338(56)
15.1 Introduction
338(1)
15.2 Types of composite materials
339(3)
15.3 Aerospace applications of fibre-polymer composites
342(6)
15.4 Advantages and disadvantages of using fibre-polymer composites
348(6)
15.5 Mechanics of continuous-fibre composites
354(24)
15.6 Sandwich composites
378(6)
15.7 Environmental durability of composites
384(6)
15.8 Summary
390(2)
15.9 Terminology
392(1)
15.10 Further reading and research
393(1)
16 Metal matrix, fibre-metal and ceramic matrix composites for aerospace applications
394(17)
16.1 Metal matrix composites
394(6)
16.2 Fibre-metal laminates
400(2)
16.3 Ceramic matrix composites
402(4)
16.4 Summary
406(1)
16.5 Terminology
407(1)
16.6 Further reading and research
408(1)
16.7 Case study: ceramic matrix composities in the space shuttle orbiter
408(3)
17 Wood in small aircraft construction
411(17)
17.1 Introduction
411(1)
17.2 Advantages and disadvantages of wood
412(1)
17.3 Hardwoods and softwoods
412(2)
17.4 Structure and composition of wood
414(4)
17.5 Engineering properties of wood
418(6)
17.6 Summary
424(1)
17.7 Terminology
425(1)
17.8 Further reading and research
426(1)
17.9 Case study: Spruce Goose (Hughes H-4 Hercules)
426(2)
18 Fracture processes of aerospace materials
428(26)
18.1 Introduction
428(3)
18.2 Fracture processes of aerospace materials
431(8)
18.3 Stress concentration effects in materials
439(5)
18.4 Fracture mechanics
444(4)
18.5 Application of fracture mechanics to aerospace materials
448(1)
18.6 Summary
449(1)
18.7 Terminology
450(1)
18.8 Further reading and research
451(1)
18.9 Case study: fracture in the space shuttle Columbia disaster
451(1)
18.10 Case study: fracture of aircraft composite radome
452(2)
19 Fracture toughness properties of aerospace materials
454(15)
19.1 Introduction
454(1)
19.2 Fracture toughness properties
454(9)
19.3 Ductile/brittle fracture transition for metals
463(2)
19.4 Improving the fracture toughness of aerospace materials
465(2)
19.5 Summary
467(1)
19.6 Terminology
468(1)
19.7 Further reading and research
468(1)
20 Fatigue of aerospace materials
469(29)
20.1 Introduction
469(1)
20.2 Fatigue stress
470(5)
20.3 Fatigue life (S-N) curves
475(2)
20.4 Fatigue-crack growth curves
477(3)
20.5 Fatigue of metals
480(7)
20.6 Fatigue of fibre-polymer composites
487(5)
20.7 Fretting, acoustic and thermal fatigue
492(1)
20.8 Summary
493(1)
20.9 Terminology
494(1)
20.10 Further reading and research
495(1)
20.11 Case study: aircraft fatigue in Japan Airlines flight 123
495(1)
20.12 Case study: metal fatigue in Comet aircraft accidents
496(2)
21 Corrosion of aerospace metals
498(23)
21.1 Introduction
498(3)
21.2 Corrosion process
501(3)
21.3 Types of corrosion
504(9)
21.4 Corrosion protection of metals
513(4)
21.5 Summary
517(1)
21.6 Terminology
517(1)
21.7 Further reading and research
518(1)
21.8 Case study: corrosion in the Aloha Airlines flight 243
519(2)
22 Creep of aerospace materials
521(13)
22.1 Introduction
521(1)
22.2 Creep behaviour of materials
522(3)
22.3 Creep of metals
525(1)
22.4 Creep of polymers and polymer composites
526(4)
22.5 Creep-resistant materials
530(2)
22.6 Summary
532(1)
22.7 Terminology
533(1)
22.8 Further reading and research
533(1)
23 Nondestructive inspection and structural health monitoring of aerospace materials
534(24)
23.1 Introduction
534(3)
23.2 Nondestructive inspection methods
537(11)
23.3 Structural health monitoring (SHM)
548(5)
23.4 Summary
553(2)
23.5 Terminology
555(2)
23.6 Further reading and research
557(1)
24 Disposal and recycling of aerospace materials
558(11)
24.1 Introduction
558(4)
24.2 Metal recycling
562(4)
24.3 Composite recycling
566(2)
24.4 Summary
568(1)
24.5 Further reading and research
568(1)
25 Materials selection for aerospace
569(32)
25.1 Introduction
569(2)
25.2 Materials selection in design
571(3)
25.3 Stages of materials selection
574(6)
25.4 Materials property charts
580(2)
25.5 Structural properties in materials selection
582(4)
25.6 Economic and business considerations in materials selection
586(3)
25.7 Manufacturing considerations in materials selection
589(4)
25.8 Durability considerations in materials selection
593(4)
25.9 Environmental considerations in materials selection
597(1)
25.10 Specialist properties in materials selection
597(1)
25.11 Summary
598(1)
25.12 Terminology
599(1)
25.13 Further reading and research
600(1)
Index 601
Adrian P. Mouritz is Professor of Aerospace Materials at the Royal Melbourne Institute of Technology, Australia.