Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Applications of Modular Forms: Computational Aspects

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is a self-contained treatment for those who study or work on the computational aspects of classical modular forms. The author describes the theory of modular forms and its applications in number theoretic problems such as representations by quadratic forms and the determination of asymptotic formulas for Fourier coefficients of different types of special functions. A detailed account of recent applications of modular forms in number theory with a focus on using computer algorithms is provided. Computer algorithms are included for each presented application to help readers put the theory in context and make new conjectures.  


Recenzijos

This book provides a collection of explicit methods for working with modular forms and applications to number-theoretic problems. It is meant as a complement to the existing literature on modular forms. ... The book contains many snippets of SageMath code, ranging from one line to roughly one page, that illustrate how the results can be applied in practice. (Peter Bruin, Mathematical Reviews, June, 2025)

Dirichlet Characters.- Modular Forms: Definition and Some Properties.- Application: Quadratic Forms.- Application: Eta Quotients.- Various Applications.

Zafer Selcuk Aygin obtained his PhD from Carleton University in 2016. Since then, he has held two prestigious postdoctoral fellowships, one at Nanyang Technological University in Singapore and the other at the University of Calgary (supported by Pacific Institute for the Mathematical Sciences). He is currently an Instructor at Northwestern Polytechnic and an Adjunct Professor at Carleton University. His main research interest is arithmetic aspects of modular forms.