Atnaujinkite slapukų nuostatas

Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation 1st ed. 2017 [Kietas viršelis]

  • Formatas: Hardback, 286 pages, aukštis x plotis: 235x155 mm, weight: 6215 g, 53 Illustrations, color; 42 Illustrations, black and white; X, 286 p. 95 illus., 53 illus. in color., 1 Hardback
  • Serija: Astronomy and Astrophysics Library 7
  • Išleidimo metai: 20-Feb-2017
  • Leidėjas: Springer Verlag, Japan
  • ISBN-10: 4431541705
  • ISBN-13: 9784431541707
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 286 pages, aukštis x plotis: 235x155 mm, weight: 6215 g, 53 Illustrations, color; 42 Illustrations, black and white; X, 286 p. 95 illus., 53 illus. in color., 1 Hardback
  • Serija: Astronomy and Astrophysics Library 7
  • Išleidimo metai: 20-Feb-2017
  • Leidėjas: Springer Verlag, Japan
  • ISBN-10: 4431541705
  • ISBN-13: 9784431541707
Kitos knygos pagal šią temą:

This important book describes the basic principles of astrochemistry—an interdisciplinary field combining astronomy, physics, and chemistry—with particular emphasis on its physical and chemical background. Chemical processes in diffuse clouds, dense quiescent molecular clouds, star-forming regions, and protoplanetary disks are discussed with a brief introduction to astrochemistry, molecular spectroscopy, and observational techniques. These contents provide astronomers with a comprehensive understanding of how interstellar matter is evolved and brought into stars and planets, which is ultimately related to the origin of the solar system. The subject matter will also be understandable and useful for physical chemists who are interested in exotic chemical processes occurring in extreme physical conditions. The book is a valuable resource for all researchers beginning at the graduate level.




This book draws on fundamental physics and chemistry to furnish an overview of the exotic and complex chemistry occurring in star-forming clouds. It describes chemical evolution from interstellar clouds to planetary systems.

1 Introduction
1(10)
1.1 Matter in Space
1(1)
1.2 Interstellar Matter and Its Circulation
2(2)
1.3 Interstellar Molecules
4(2)
1.4 Importance of Chemistry
6(2)
1.5 Principal Aim of This Book
8(1)
1.6 Units Used in Astronomy
8(1)
1.7 Reaction Rates
9(2)
References
9(2)
2 Derivation of Molecular Abundances
11(26)
2.1 Thermal Emission
11(2)
2.2 Information Derived from Spectral Line Observations
13(12)
2.2.1 Radiative Transfer
13(3)
2.2.2 Absorption Coefficient
16(4)
2.2.3 Optically Thin Case: Rotation Diagram Analysis
20(1)
2.2.4 Optically Thick Case
21(4)
2.3 Mechanism Determining Excitation Temperature
25(3)
2.4 Practical Issues for Deriving Molecular Abundances
28(9)
2.4.1 Source Structure
28(2)
2.4.2 Forward and Backward Approaches
30(1)
2.4.3 Molecular Parameters
30(5)
References
35(2)
3 Basic Concepts for Gas-Phase Chemical Reactions
37(28)
3.1 Chemical Reactions: Macroscopic and Microscopic Viewpoints
37(2)
3.2 Reactions in Interstellar Clouds
39(3)
3.3 Ion--Molecule Reactions
42(5)
3.4 Neutral--Neutral Reactions
47(4)
3.5 Radiative Association Reactions
51(1)
3.6 Dissociative Electron Recombination
52(2)
3.7 Photodissociation and Photoionization
54(4)
3.8 Timescale of Chemical Reactions
58(2)
3.9 Timescale for Chemical Equilibrium
60(5)
References
62(3)
4 Chemistry of Diffuse Clouds
65(26)
4.1 Physical Conditions in Diffuse Clouds
65(2)
4.2 Molecules Detected in Diffuse Clouds
67(3)
4.3 Carbon Chemistry
70(5)
4.4 Oxygen Chemistry
75(2)
4.5 Nitrogen Chemistry
77(1)
4.6 Chemical Model of a Diffuse Cloud
78(3)
4.7 CH+ Problem
81(2)
4.8 H3+ Problem
83(2)
4.9 Diffuse Interstellar Bands
85(6)
References
89(2)
5 Chemistry of Molecular Clouds I: Gas Phase Processes
91(40)
5.1 Physical Conditions in Molecular Clouds
91(2)
5.2 Molecules in Molecular Cloud Cores
93(4)
5.3 H3+ Chemistry
97(8)
5.4 Destruction of Molecules
105(2)
5.5 Carbon Chemistry
107(5)
5.6 Oxygen Chemistry and Its Relation to Carbon Chemistry
112(2)
5.7 Nitrogen Chemistry
114(3)
5.8 Sulfur Chemistry
117(3)
5.9 Anion Chemistry
120(2)
5.10 Gas-Phase Chemical Models and Comparisons with Observations
122(9)
References
128(3)
6 Chemistry of Molecular Clouds II: Gas--Grain Processes
131(30)
6.1 Roles of Dust Grains in Astrochemistry
131(1)
6.2 Depletion of Atoms and Molecules onto Dust Grains
132(6)
6.3 Grain-Surface Reactions
138(4)
6.4 Formation of H2 Molecules on Grain Surfaces
142(2)
6.5 Formation of Various Molecules on Grain Surfaces
144(3)
6.6 Desorption of Molecules by Nonthermal Processes
147(1)
6.7 Observation of Grain Mantles
148(1)
6.8 Gas--Grain Models
149(3)
6.9 Deuterium Fractionation
152(9)
References
159(2)
7 Chemistry of Star-Forming Regions
161(44)
7.1 Introduction
161(2)
7.2 Formation of Low-Mass Stars
163(3)
7.3 Formation of High-Mass Stars
166(1)
7.4 Chemical Compositions of Low-Mass Star-Forming Regions
167(7)
7.4.1 Hot Corino Chemistry
167(3)
7.4.2 Warm Carbon-Chain Chemistry Sources
170(3)
7.4.3 Chemical Diversity
173(1)
7.5 Chemical Compositions of High-Mass Star-Forming Regions
174(6)
7.5.1 Orion KL
174(2)
7.5.2 W3(OH) and W3(H2O)
176(4)
7.5.3 Infrared Dark Clouds
180(1)
7.6 General Features of Chemical Processes in Star-Forming Regions
180(3)
7.7 Chemical Differentiation Between Oxygen-Bearing and Nitrogen-Bearing Species
183(2)
7.8 Carbon Chemistry in Low-Mass Star-Forming Regions: Hot Corino Chemistry and WCCC
185(3)
7.9 Outflow Shocks
188(4)
7.10 Phosphorous Chemistry in Star-Forming Regions
192(1)
7.11 Photodissociation Regions
193(3)
7.12 Polycyclic Aromatic Hydrocarbons (PAHs) and PDRs
196(9)
References
201(4)
8 Chemistry of Protoplanetary Disks
205(22)
8.1 Introduction
205(1)
8.2 Basic Physical Structure of Protoplanetary Disks
206(4)
8.3 Molecules Detected in Protoplanetary Disks
210(3)
8.4 Chemical Processes in Protoplanetary Disks
213(6)
8.4.1 Disk Midplane
213(3)
8.4.2 Disk Surface
216(1)
8.4.3 Molecular Zone
217(1)
8.4.4 Vertical and Radial Mixing
217(2)
8.4.5 Inner Disk
219(1)
8.5 Chemical Models
219(2)
8.6 Molecules in Comets
221(6)
References
223(4)
9 Chemical Evolution from Interstellar Clouds to Star- and Planet- Forming Regions
227(6)
Further Readings
230(3)
10 Appendix 1: Rotational Spectra of Molecules
233(20)
10.1 Rigid Rotor
233(1)
10.2 Rotational Spectra of Diatomic and Linear Molecules
234(2)
10.3 Rotational Spectra of Symmetric-Top Molecules
236(2)
10.4 Rotational Spectra of Asymmetric-Top Molecules
238(1)
10.5 Fine Structure in Rotational Transitions
239(5)
10.6 Hyperfine Structure of Rotational Transitions
244(2)
10.7 Internal Rotation and Inversion
246(7)
References
251(2)
11 Appendix 2: Observational Techniques
253(14)
11.1 Atmospheric Transmittance
253(2)
11.2 Antennas
255(1)
11.3 Receivers
256(5)
11.3.1 Receiver Configuration
256(2)
11.3.2 SIS Mixers
258(1)
11.3.3 HEB Mixers
259(1)
11.3.4 Measurements of Receiver Noise Temperature
260(1)
11.4 Radio Spectrometers
261(1)
11.5 Aperture Synthesis
262(2)
11.6 Intensity Calibrations
264(3)
References
266(1)
12 Solution to Problems
267(16)
Index 283
Satoshi Yamamoto, Professor Division of Physics The University of Tokyo

-ALMA Annual External Review Committee  -Stealing Committee for National Astronomical Observatory of Japan -SOC Chair for International Symposium 30 years of Nobeyama Radio Observatory