Atnaujinkite slapukų nuostatas

Introduction to Black Hole Physics [Kietas viršelis]

(Department of Physics, University of Alberta, Edmonton, Canada), (Department of Physics, University of Alberta, Edmonton, Canada)
  • Formatas: Hardback, 506 pages, aukštis x plotis x storis: 249x180x34 mm, weight: 1150 g, 123 b/w line drawings
  • Išleidimo metai: 22-Sep-2011
  • Leidėjas: Oxford University Press
  • ISBN-10: 0199692297
  • ISBN-13: 9780199692293
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 506 pages, aukštis x plotis x storis: 249x180x34 mm, weight: 1150 g, 123 b/w line drawings
  • Išleidimo metai: 22-Sep-2011
  • Leidėjas: Oxford University Press
  • ISBN-10: 0199692297
  • ISBN-13: 9780199692293
Kitos knygos pagal šią temą:
This book is about black holes, one of the most intriguing objects of modern Theoretical Physics and Astrophysics. For many years, black holes have been considered as interesting solutions of the theory of General Relativity with a number of amusing mathematical properties. Now after the discovery of astrophysical black holes, the Einstein gravity has become an important tool for their study. This self-contained textbook combines physical, mathematical, and astrophysical aspects of black hole theory. Pedagogically presented, it contains 'standard' material on black holes as well as relatively new subjects such as the role of hidden symmetries in black hole physics, and black holes in spacetimes with large extra dimensions. The book will appeal to students and young scientists interested in the theory of black holes.

Recenzijos

I think that this book is really a wonderful introduction to the physics of black holes ... I can warmly recommend it to any graduate student who has mastered an introductory course on general relativity and wants to learn more about black holes. * Thomas Peter, University of Zurich, Contemporary Science *

1 Black Holes: Big Picture
1(46)
1.1 Gravity and Black Holes
1(7)
1.2 Brief History of Black Holes
8(4)
1.3 `Dark Stars' vs. Black Holes
12(3)
1.4 Final State of Stellar Evolution
15(4)
1.5 Equilibrium of Gravitating Systems
19(3)
1.6 Important Notions of Astrophysics
22(4)
1.7 Black Holes in Astrophysics and Cosmology
26(3)
1.8 Stellar-Mass Black Holes
29(5)
1.9 Supermassive Black Holes
34(6)
1.10 Primordial Black Holes
40(1)
1.11 Black Holes in Theoretical Physics
41(3)
1.12 Black Holes and Extra Dimensions
44(3)
2 Physics in a Uniformly Accelerated Frame
47(20)
2.1 Minkowski Spacetime and Its Symmetries
47(3)
2.2 Minkowski Spacetime in Curved Coordinates
50(7)
2.3 Uniformly Accelerated Reference Frame
57(2)
2.4 Homogeneous Gravitational Field
59(4)
2.5 Causal Structure
63(2)
2.6 Wick's Rotation in the Rindler Space
65(2)
3 Riemannian Geometry
67(42)
3.1 Differential Manifold. Tensors
67(7)
3.2 Metric
74(5)
3.3 Covariant Derivative
79(2)
3.4 Lie and Fermi Transport
81(3)
3.5 Curvature Tensor
84(6)
3.6 Parallel Transport of a Vector
90(7)
3.7 Spacetime Symmetries
97(5)
3.8 Submanifold
102(4)
3.9 Integration
106(3)
4 Particle Motion in Curved Spacetime
109(18)
4.1 Equations of Motion
109(5)
4.2 Phase Space
114(6)
4.3 Complete Integrability
120(7)
5 Einstein Equations
127(35)
5.1 Einstein-Hilbert Action
127(2)
5.2 Einstein Equations
129(6)
5.3 Linearized Gravity
135(7)
5.4 Gravitational radiation
142(7)
5.5 Gravity in Higher-Dimensions
149(13)
6 Spherically Symmetric Black Holes
162(23)
6.1 Spherically Symmetric Gravitational Field
162(4)
6.2 Schwarzschild-de Sitter Metric
166(6)
6.3 Global Structure of the Schwarzschild Spacetime
172(6)
6.4 Black Hole Interior
178(2)
6.5 Painleve-Gullstrand Metric
180(1)
6.6 Eddington-Finkelstein Coordinates
181(1)
6.7 Charged Black Holes
181(1)
6.8 Higher-Dimensional Spherical Black Holes
182(3)
7 Particles and Light Motion in Schwarzschild Spacetime
185(57)
7.1 Equations of Motion
185(3)
7.2 Particle Trajectories
188(8)
7.3 Kepler's Law
196(4)
7.4 Light Propagation
200(11)
7.5 Ray-Tracing in Schwarzschild Spacetime
211(4)
7.6 Black Hole as a Gravitational Lens
215(8)
7.7 Radiation from an Object Moving Around the Black Hole
223(7)
7.8 Equations of Motion in `Tilted' Spherical Coordinates
230(1)
7.9 Magnetized Schwarzschild Black Hole
230(6)
7.10 Particle and Light Motion Near Higher-Dimensional Black Holes
236(6)
8 Rotating Black Holes
242(56)
8.1 Kerr Spacetime
242(4)
8.2 Ergosphere. Horizon
246(11)
8.3 Particle and Light Motion in Equatorial Plane
257(11)
8.4 Spinning up the Black Hole
268(4)
8.5 Geodesies in Kerr Spacetime: General Case
272(4)
8.6 Light Propagation
276(10)
8.7 Hidden Symmetries of Kerr Spacetime
286(3)
8.8 Energy Extraction from a Rotating Black Hole
289(4)
8.9 Black Holes in External Magnetic Field
293(5)
9 Classical and Quantum Fields near Black Holes
298(49)
9.1 Introduction
298(1)
9.2 Static Field in the Schwarzschild Spacetime
299(3)
9.3 Dimensional Reduction
302(5)
9.4 Quasinormal Modes
307(7)
9.5 Massless Fields in the Kerr Spacetime
314(1)
9.6 Black Hole in a Thermal Bath
315(5)
9.7 Hawking Effect
320(5)
9.8 Quantum Fields in the Rindler Spacetime
325(11)
9.9 Black Hole Thermodynamics
336(4)
9.10 Higher-Dimensional Generalizations
340(7)
10 Black Holes and All That Jazz
347(61)
10.1 Asymptotically Flat Spacetimes
347(8)
10.2 Black Holes: General Definition and Properties
355(7)
10.3 Black Holes and Search for Gravitational Waves
362(8)
10.4 `Black Holes' in Laboratories
370(6)
10.5 Black Holes in Colliders?
376(6)
10.6 Higher-Dimensional Black Holes
382(11)
10.7 Wormholes
393(6)
10.8 `Time Machine' Problem
399(9)
Appendix A Fundamental Constants and Units
408(2)
A.1 Fundamental Constants
408(1)
A.2 Planck Units
408(1)
A.3 Conversion Factors
408(1)
A.4 Various Scales of Masses
409(1)
A.5 Milky Way Galaxy Observational Data
409(1)
A.6 Universe Observational Data
409(1)
A.7 Dimensionless Entropy (S/kB)
409(1)
Appendix B Gauss-Codazzi Equations
410(2)
B.1 Gauss-Codazzi Equations
410(1)
B.2 Static Surface in a Static Spacetime
411(1)
Appendix C Conformal Transformations
412(2)
Appendix D Hidden Symmetries
414(17)
D.1 Conformal Killing Tensor
414(1)
D.2 Killing-Yano Tensors
414(3)
D.3 Primary Killing Vector
417(1)
D.4 Properties of the Primary Killing Vector
418(1)
D.5 Secondary Killing Vector
418(2)
D.6 Darboux Basis
420(2)
D.7 Canonical Form of Metric
422(3)
D.8 Separation of Variables in Canonical Coordinates
425(1)
D.9 Higher-Dimensional Generalizations
425(3)
D.10 Higher-Dimensional Kerr-NUT-(A)dS Metric
428(3)
Appendix E Boundary Term for the Einstein-Hilbert Action
431(4)
E.1 An Example Illustrating the Problem
431(1)
E.2 Boundary Term for the Einstein-Hilbert Action
432(2)
E.3 Boundary Term for the Euclidean Einstein-Hilbert Action
434(1)
Appendix F Quantum Fields
435(28)
F.1 Classical Oscillator
435(2)
F.2 Quantum Oscillator
437(5)
F.3 Quantum Field in Flat Spacetime
442(12)
F.4 Quantum Theory in (1+1)-Spacetime
454(9)
References 463(14)
Index 477
Valeri Frolov is Killam Memorial Chair and Professor of Physics at the University of Alberta, Edmonton, Canada.

Andrei Zelnikov is Research Associate at the Department of Physics, University of Alberta, Edmonton, Canada.