Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Catalysis and Industrial Catalytic Processes

(Engelhard Corporation, Iselin, NJ ), , (Brigham Young University, Provo, UT)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 12-Mar-2020
  • Leidėjas: Wiley-AIChE
  • Kalba: eng
  • ISBN-13: 9781119101673
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 12-Mar-2020
  • Leidėjas: Wiley-AIChE
  • Kalba: eng
  • ISBN-13: 9781119101673
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Introduces major catalytic processes including products from the petroleum, chemical, environmental and alternative energy industries





Provides an easy to read description of the fundamentals of catalysis and some of the major catalytic industrial processes used today Offers a rationale for process designs based on kinetics and thermodynamics Alternative energy topics include the hydrogen economy, fuels cells, bio catalytic (enzymes) production of ethanol fuel from corn and biodiesel from vegetable oils Problem sets of included with answers available to faculty who use the book



Review: "In less than 300 pages, it serves as an excellent introduction to these subjects whether for advanced students or those seeking to learn more about these subjects on their own time...Particularly useful are the succinct summaries throughout the book...excellent detail in the table of contents, a detailed index, key references at the end of each chapter, and challenging classroom questions..." (GlobalCatalysis.com, May 2016)

Recenzijos

"In less than 300 pages it serves as an excellent introduction to these subjects whether for advanced students or those seeking to learn more about these subjects on their own time...Particularly useful are the succinct summaries throughout the book...excellent detail in the table of contents, a detailed index, key references at the end of each chapter, and challenging classroom questions..." (GlobalCatalysis.com, May 2016)

Preface xv
Acknowledgments xvii
List of Figures
xix
Nomenclature xxvii
Chapter 1 Catalyst Fundamentals Of Industrial Catalysis
1(30)
1.1 Introduction
1(1)
1.2 Catalyzed versus Noncatalyzed Reactions
1(5)
1.2.1 Example Reaction: Liquid-Phase Redox Reaction
2(2)
1.2.2 Example Reaction: Gas-Phase Oxidation Reaction
4(2)
1.3 Physical Structure of a Heterogeneous Catalyst
6(4)
1.3.1 Active Catalytic Species
7(1)
1.3.2 Chemical and Textural Promoters
7(1)
1.3.3 Carrier Materials
8(1)
1.3.4 Structure of the Catalyst and Catalytic Reactor
8(2)
1.4 Adsorption and Kinetically Controlled Models for Heterogeneous Catalysis
10(9)
1.4.1 Langmuir Isotherm
11(2)
1.4.2 Reaction Kinetic Models
13(1)
1.4.2.1 Langmuir--Hinshelwood Kinetics for CO Oxidation on Pt
14(3)
1.4.2.2 Mars--van Krevelen Kinetic Mechanism
17(1)
1.4.2.3 Eley--Rideal (E--R) Kinetic Mechanism
18(1)
1.4.2.4 Kinetic versus Empirical Rate Models
18(1)
1.5 Supported Catalysts: Dispersed Model
19(5)
1.5.1 Chemical and Physical Steps Occurring during Heterogeneous Catalysis
19(3)
1.5.2 Reactant Concentration Gradients within the Catalyzed Material
22(1)
1.5.3 The Rate-Limiting Step
22(2)
1.6 Selectivity
24(7)
1.6.1 Examples of Selectivity Calculations for Reactions with Multiple Products
25(1)
1.6.2 Carbon Balance
26(1)
1.6.3 Experimental Methods for Measuring Carbon Balance
27(1)
Questions
27(2)
Bibliography
29(2)
Chapter 2 The Preparation Of Catalytic Materials
31(17)
2.1 Introduction
31(1)
2.2 Carrier Materials
32(5)
2.2.1 A12O3
32(2)
2.2.2 SiO2
34(1)
2.2.3 TiO2
34(1)
2.2.4 Zeolites
35(2)
2.2.5 Carbons
37(1)
2.3 Incorporating the Active Material into the Carrier
37(3)
2.3.1 Impregnation
37(1)
2.3.2 Incipient Wetness or Capillary Impregnation
38(1)
2.3.3 Electrostatic Adsorption
38(1)
2.3.4 Ion Exchange
38(1)
2.3.5 Fixing the Catalytic Species
39(1)
2.3.6 Drying and Calcination
39(1)
2.4 Forming the Final Shape of the Catalyst
40(5)
2.4.1 Powders
40(1)
2.4.1.1 Milling and Sieving
41(1)
2.4.1.2 Spray Drying
42(1)
2.4.2 Pellets, Pills, and Rings
43(1)
2.4.3 Extrudates
43(1)
2.4.4 Granules
44(1)
2.4.5 Monoliths
44(1)
2.5 Catalyst Physical Structure and Its Relationship to Performance
45(1)
2.6 Nomenclature for Dispersed Catalysts
45(3)
Questions
46(1)
Bibliography
46(2)
Chapter 3 Catalyst Characterization
48(21)
3.1 Introduction
48(1)
3.2 Physical Properties of Catalysts
49(5)
3.2.1 Surface Area and Pore Size
49(1)
3.2.1.1 Nitrogen Porosimetry
49(2)
3.2.1.2 Pore Size by Mercury Intrusion
51(1)
3.2.2 Particle Size Distribution of Particulate Catalyst
51(1)
3.2.2.1 Particle Size Distribution
51(2)
3.2.2.2 Mechanical Strength
53(1)
3.2.3 Physical Properties of Environmental Washcoated Monolith Catalysts
54(1)
3.2.3.1 Washcoat Thickness
54(1)
3.2.3.2 Washcoat Adhesion
54(1)
3.3 Chemical and Physical Morphology Structures of Catalytic Materials
54(11)
3.3.1 Elemental Analysis
54(1)
3.3.2 Thermal Gravimetric Analysis and Differential Thermal Analysis
55(1)
3.3.3 The Morphology of Catalytic Materials by Scanning Electron Microscopy
56(1)
3.3.4 Structural Analysis by X-Ray Diffraction
57(1)
3.3.5 Structure and Morphology of Al2O3 Carriers
58(1)
3.3.6 Dispersion or Crystallite Size of Catalytic Species
58(1)
3.3.6.1 Chemisorption
58(3)
3.3.6.2 Transmission Electron Microscopy
61(1)
3.3.7 X-Ray Diffraction
62(1)
3.3.8 Surface Composition of Catalysts by X-Ray Photoelectron Spectroscopy
62(2)
3.3.9 The Bonding Environment of Metal Oxides by Nuclear Magnetic Resonance
64(1)
3.4 Spectroscopy
65(4)
Questions
66(1)
Bibliography
67(2)
Chapter 4 Reaction Rate In Catalytic Reactors
69(19)
4.1 Introduction
69(1)
4.2 Space Velocity, Space Time, and Residence Time
69(2)
4.3 Definition of Reaction Rate
71(1)
4.4 Rate of Surface Kinetics
72(6)
4.4.1 Empirical Power Rate Expressions
72(1)
4.4.2 Experimental Measurement of Empirical Kinetic Parameters
73(4)
4.4.3 Accounting for Chemical Equilibrium in Empirical Rate Expression
77(1)
4.4.4 Special Case for First-Order Isothermal Reaction
77(1)
4.5 Rate of Bulk Mass Transfer
78(2)
4.5.1 Overview of Bulk Mass Transfer Rate
78(1)
4.5.2 Origin of Bulk Mass Transfer Rate Expression
79(1)
4.6 Rate of Pore Diffusion
80(2)
4.6.1 Overview of Pore Diffusion
80(1)
4.6.2 Pore Diffusion Theory
81(1)
4.7 Apparent Activation Energy and the Rate-Limiting Process
82(1)
4.8 Reactor Bed Pressure Drop
83(1)
4.9 Summary
84(4)
Questions
84(3)
Bibliography
87(1)
Chapter 5 Catalyst Deactivation
88(16)
5.1 Introduction
88(1)
5.2 Thermally Induced Deactivation
88(8)
5.2.1 Sintering of the Catalytic Species
89(3)
5.2.2 Sintering of Carrier
92(3)
5.2.3 Catalytic Species--Carrier Interactions
95(1)
5.3 Poisoning
96(3)
5.3.1 Selective Poisoning
96(1)
5.3.2 Nonselective Poisoning or Masking
97(2)
5.4 Coke Formation and Catalyst Regeneration
99(5)
Questions
101(2)
Bibliography
103(1)
Chapter 6 Generating Hydrogen And Synthesis Gas By Catalytic Hydrocarbon Steam Reforming
104(25)
6.1 Introduction
104(1)
6.1.1 Why Steam Reforming with Hydrocarbons?
104(1)
6.2 Large-Scale Industrial Process for Hydrogen Generation
105(16)
6.2.1 General Overview
105(1)
6.2.2 Hydrodesulfurization
106(1)
6.2.3 Hydrogen via Steam Reforming and Partial Oxidation
106(1)
6.2.3.1 Steam Reforming
106(4)
6.2.3.2 Deactivation of Steam Reforming Catalyst
110(1)
6.2.3.3 Pre-reforming
111(1)
6.2.3.4 Partial Oxidation and Autothermal Reforming
111(1)
6.2.4 Water Gas Shift
112(4)
6.2.4.1 Deactivation of Water Gas Shift Catalyst
116(1)
6.2.5 Safety Considerations During Catalyst Removal
116(1)
6.2.6 Other CO Removal Methods
116(1)
6.2.6.1 Pressure Swing Absorption
116(1)
6.2.6.2 Methanation
117(1)
6.2.6.3 Preferential Oxidation of CO
117(2)
6.2.7 Hydrogen Generation for Ammonia Synthesis
119(1)
6.2.8 Hydrogen Generation for Methanol Synthesis
120(1)
6.2.9 Synthesis Gas for Fischer--Tropsch Synthesis
120(1)
6.3 Hydrogen Generation for Fuel Cells
121(5)
6.3.1 New Catalyst and Reactor Designs for the Hydrogen Economy
122(1)
6.3.2 Steam Reforming
123(1)
6.3.3 Water Gas Shift
124(1)
6.3.4 Preferential Oxidation
125(1)
6.3.5 Combustion
125(1)
6.3.6 Autothermal Reforming for Complicated Fuels
126(1)
6.3.7 Steam Reforming of Methanol: Portable Power Applications
126(1)
6.4 Summary
126(3)
Questions
127(1)
Bibliography
128(1)
Chapter 7 Ammonia, Methanol, Fischer--Tropsch Production
129(17)
7.1 Ammonia Synthesis
129(5)
7.1.1 Thermodynamics
129(1)
7.1.2 Reaction Chemistry and Catalyst Design
130(2)
7.1.3 Process Design
132(2)
7.1.4 Catalyst Deactivation
134(1)
7.2 Methanol Synthesis
134(6)
7.2.1 Process Design
136(1)
7.2.1.1 Quench Reactor
136(1)
7.2.1.2 Staged Cooling Reactor
137(1)
7.2.1.3 Tube-Cooled Reactor
137(1)
7.2.1.4 Shell-Cooled Reactor
138(1)
7.2.2 Catalyst Deactivation
139(1)
7.3 Fischer--Tropsch Synthesis
140(6)
7.3.1 Process Design
142(1)
7.3.1.1 Bubble/Slurry-Phase Process
142(1)
7.3.1.2 Packed Bed Process
143(1)
7.3.1.3 Slurry/Loop Reactor (Synthol Process)
143(1)
7.3.2 Catalyst Deactivation
143(1)
Questions
144(1)
Bibliography
145(1)
Chapter 8 Selective Oxidations
146(25)
8.1 Nitric Acid
146(5)
8.1.1 Reaction Chemistry and Catalyst Design
146(1)
8.1.1.1 The Importance of Catalyst Selectivity
147(1)
8.1.1.2 The PtRh Alloy Catalyst
147(1)
8.1.2 Nitric Acid Production Process
148(2)
8.1.3 Catalyst Deactivation
150(1)
8.2 Hydrogen Cyanide
151(3)
8.2.1 HCN Production Process
152(1)
8.2.2 Deactivation
152(2)
8.3 The Claus Process: Oxidation of H2S
154(1)
8.3.1 Clause Process Description
154(1)
8.3.2 Catalyst Deactivation
155(1)
8.4 Sulfuric Acid
155(4)
8.4.1 Sulfuric Acid Production Process
155(3)
8.4.2 Catalyst Deactivation
158(1)
8.5 Ethylene Oxide
159(1)
8.5.1 Catalyst
159(1)
8.5.2 Catalyst Deactivation
160(1)
8.5.3 Ethylene Oxide Production Process
160(1)
8.6 Formaldehyde
160(4)
8.6.1 Low-Methanol Production Process
162(1)
8.6.1.1 Fe + Mo Catalyst
162(1)
8.6.2 High-Methanol Production Process
163(1)
8.6.2.1 Ag Catalyst
164(1)
8.7 Acrylic Acid
164(2)
8.7.1 Acrylic Acid Production Process
164(1)
8.7.2 Acrylic Acid Catalyst
165(1)
8.7.3 Catalyst Deactivation
166(1)
8.8 Maleic Anhydride
166(1)
8.8.1 Catalyst Deactivation
166(1)
8.9 Acrylonitrile
166(5)
8.9.1 Acrylonitrile Production Process
167(1)
8.9.2 Catalyst
168(1)
8.9.3 Deactivation
168(1)
Questions
168(1)
Bibliography
169(2)
Chapter 9 Hydrogenation, Dehydrogenation, And Alkylation
171(19)
9.1 Introduction
171(1)
9.2 Hydrogenation
171(6)
9.2.1 Hydrogenation in Stirred Tank Reactors
171(3)
9.2.2 Kinetics of a Slurry-Phase Hydrogenation Reaction
174(2)
9.2.3 Design Equation for the Continuous Stirred Tank Reactor
176(1)
9.3 Hydrogenation Reactions and Catalysts
177(8)
9.3.1 Hydrogenation of Vegetable Oils for Edible Food Products
177(3)
9.3.2 Hydrogenation of Functional Groups
180(3)
9.3.3 Biomass (Corn Husks) to a Polymer
183(1)
9.3.4 Comparing Base Metal and Precious Metal Catalysts
183(2)
9.4 Dehydrogenation
185(2)
9.5 Alkylation
187(3)
Questions
188(1)
Bibliography
189(1)
Chapter 10 Petroleum Processing
190(15)
10.1 Crude Oil
190(1)
10.2 Distillation
191(2)
10.3 Hydrodemetalization and Hydrodesulfurization
193(4)
10.4 Hydrocarbon Cracking
197(3)
10.4.1 Fluid Catalytic Cracking
197(3)
10.4.2 Hydrocracking
200(1)
10.5 Naphtha Reforming
200(5)
Questions
202(1)
Bibliography
203(2)
Chapter 11 Homogeneous Catalysis And Polymerization Catalysts
205(10)
11.1 Introduction to Homogeneous Catalysis
205(1)
11.2 Hydroformylation: Aldehydes from Olefins
206(2)
11.3 Carboxylation: Acetic Acid Production
208(1)
11.4 Enzymatic Catalysis
209(1)
11.5 Polyolefins
210(5)
11.5.1 Polyethylene
210(2)
11.5.2 Polypropylene
212(1)
Questions
213(1)
Bibliography
213(2)
Chapter 12 Catalytic Treatment From Stationary Sources: Hc, Co, Nox, And O3
215(20)
12.1 Introduction
215(1)
12.2 Catalytic Incineration of Hydrocarbons and Carbon Monoxide
216(9)
12.2.1 Monolith (Honeycomb) Reactors
218(1)
12.2.2 Catalyzed Monolith (Honeycomb) Structures
219(1)
12.2.3 Reactor Sizing
220(2)
12.2.4 Catalyst Deactivation
222(2)
12.2.5 Regeneration of Deactivated Catalysts
224(1)
12.3 Food Processing
225(1)
12.3.1 Catalyst Deactivation
226(1)
12.4 Nitrogen Oxide (NOx) Reduction from Stationary Sources
226(4)
12.4.1 SCR Technology
227(2)
12.4.2 Ozone Abatement in Aircraft Cabin Air
229(1)
12.4.3 Deactivation
229(1)
12.5 CO2 Reduction
230(5)
Questions
231(2)
Bibliography
233(2)
Chapter 13 Catalytic Abatement Of Gasoline Engine Emissions
235(27)
13.1 Emissions and Regulations
235(3)
13.1.1 Origins of Emissions
235(1)
13.1.2 Regulations in the United States
236(2)
13.1.3 The Federal Test Procedure for the United States
238(1)
13.2 Catalytic Reactions Occurring During Catalytic Abatement
238(1)
13.3 First-Generation Converters: Oxidation Catalyst
239(1)
13.4 The Failure of Nonprecious Metals: A Summary of Catalyst History
240(2)
13.4.1 Deactivation and Stabilization of Precious Metal Oxidation Catalysts
241(1)
13.5 Supporting the Catalyst in the Exhaust
242(4)
13.5.1 Ceramic Monoliths
242(3)
13.5.2 Metal Monoliths
245(1)
13.6 Preparing the Monolith Catalyst
246(1)
13.7 Rate Control Regimes in Automotive Catalysts
247(1)
13.8 Catalyzed Monolith Nomenclature
248(1)
13.9 Precious Metal Recovery from Catalytic Converters
248(1)
13.10 Monitoring Catalytic Activity in a Monolith
248(2)
13.11 The Failure of the Traditional Beaded (Particulate) Catalysts for Automotive Applications
250(1)
13.12 NOx, CO and HC Reduction: The Three-Way Catalyst
251(4)
13.13 Simulated Aging Methods
255(1)
13.14 Close-Coupled Catalyst
256(2)
13.15 Final Comments
258(4)
Questions
259(2)
Bibliography
261(1)
Chapter 14 Diesel Engine Emission Abatement
262(12)
14.1 Introduction
262(3)
14.1.1 Emissions from Diesel Engines
262(2)
14.1.2 Analytical Procedures for Particulates
264(1)
14.2 Catalytic Technology for Reducing Emissions from Diesel Engines
265(9)
14.2.1 Diesel Oxidation Catalyst
265(1)
14.2.2 Diesel Soot Abatement
266(1)
14.2.3 Controlling NOx in Diesel Engine Exhaust
267(5)
Questions
272(1)
Bibliography
273(1)
Chapter 15 Alternative Energy Sources Using Catalysis: Bioethanol By Fermentation, Biodiesel By Transesterification, And H2-Based Fuel Cells
274(23)
15.1 Introduction: Sources of Non-Fossil Fuel Energy
274(2)
15.2 Sources of Non-Fossil Fuels
276(3)
15.2.1 Biodiesel
276(1)
15.2.1.1 Production Process
276(1)
15.2.2 Bioethanol
277(1)
15.2.2.1 Process for Bioethanol from Corn
278(1)
15.2.3 Lignocellulose Biomass
278(1)
15.2.4 New Sources of Natural Gas and Oil Sands
279(1)
15.3 Fuel Cells
279(4)
15.3.1 Markets for Fuel Cells
281(1)
15.3.1.1 Transportation Applications
281(1)
15.3.1.2 Stationary Applications
282(1)
15.3.1.3 Portable Power Applications
282(1)
15.4 Types of Fuel Cells
283(10)
15.4.1 Low-Temperature PEM Fuel Cell
284(1)
15.4.1.1 Electrochemical Reactions for H2-Fueled Systems
284(2)
15.4.1.2 Mechanistic Principles of the PEM Fuel Cell
286(1)
15.4.1.3 Membrane Electrode Assembly
287(1)
15.4.2 Solid Polymer Membrane
288(1)
15.4.3 PEM Fuel Cells Based on Direct Methanol
289(1)
15.4.4 Alkaline Fuel Cell
290(1)
15.4.5 Phosphoric Acid Fuel Cell
290(1)
15.4.6 Molten Carbonate Fuel Cell
291(2)
15.4.7 Solid Oxide Fuel Cell
293(1)
15.5 The Ideal Hydrogen Economy
293(4)
Questions
294(1)
Bibliography
295(2)
Index 297
Robert J. Farrauto, PHD, is Professor of Practice in the Earth and Environmental Engineering Department at Columbia University in the City of New York. He retired from BASF (formerly Engelhard) as a Research Vice President after 37 years of service. He has over 40 years industrial experience in catalysis and has commercialized a number of technologies in the environmental, chemical and alternative energy fields. He holds 58 US patents and over 115 peer-reviewed journal publications. He teaches graduate and undergraduate courses focusing on catalysis. He is a co-author of Fundamentals of Industrial Catalytic Processes, 2nd Edition and Catalytic Air Pollution Control: Commercial Technology, 3rd Edition.

Lucas Dorazio, PhD is a Research Chemical Engineer at BASF Corporation, Iselin, NJ where he is engaged in reforming and environmental technology. He is also Adjunct assistant professor at New Jersey Institute of Technology where he teaches environmental and industrial catalysis. 

Calvin H. Bartholomew, PhD is Emeritus Professor at Brigham Young University. He continues to conduct catalysis research, is active in consulting and does specialized teaching for AICHE short courses in catalysis. He has been principal investigator or co-investigator on over 60 grants and contracts and has supervised more than 175 research students. He is the author or co-author of 5 books and 120 peer-reviewed papers and reviews with emphasis on catalysis.