Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Diophantine Equations: A Problem-Based Approach

4.20/5 (29 ratings by Goodreads)
  • Formatas: PDF+DRM
  • Išleidimo metai: 02-Sep-2010
  • Leidėjas: Birkhauser Boston Inc
  • Kalba: eng
  • ISBN-13: 9780817645496
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 02-Sep-2010
  • Leidėjas: Birkhauser Boston Inc
  • Kalba: eng
  • ISBN-13: 9780817645496
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants - including Olympiad and Putnam competitors - as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.

This problem-solving book is an introduction to the study of Diophantine equations. It introduces the reader to elementary methods necessary in solving Diophantine equations and contains complete solutions to all exercises

Recenzijos

From the reviews:

This book is devoted to problems from mathematical competitions involving diophantine equations. Each chapter contains a large number of solved examples and presents the reader with problems whose solutions can be found in the books second part. This volume will be particularly interesting for participants in mathematical contests and their coaches. It will also give a lot of pleasure to everyone who likes to tackle elementary, yet nontrivial problems concerning diophantine equations. (Ch. Baxa, Monatshefte für Mathematik, Vol. 167 (3-4), September, 2012)

This book explains methods for solving problems with Diophantine equations that often appear in mathematical competitions at various levels. The book can be recommended to mathematical contest participants, but also to undergraduate students, advanced high school students and teachers. (Andrej Dujella, Mathematical Reviews, Issue 2011 j)

Diophantus Arithmetica is a collection of problems each followed by a solution...The book at hand is intended for high school students, undergraduates and math teachers. It is written in a language that everyone in these groups will be familiar with. The exposition is very lucid and the proofs are clear and instructive. The book will be an invaluable source for math contest participants and other math fans. It will be an excellent addition to any math library. (Alex Bogomolny, The Mathematical Association of America, October, 2010)

Diophantine analysis, the business of solving equations with integers, constitutes a subdiscipline within the larger field of number theory. One problem in this subject, Fermat's last theorem, till solved, topped most lists of the world's most celebrated unsolved mathematics problems, so the subject attracted much attention from mathematicians and even the larger public. Nevertheless, sophisticated 20th-century tools invented to attackDiophantine equations (algebraic number fields, automorphic forms, L-functions, adelic groups, etc.) have emerged as proper objects of study in their own right. So for a popular subject, modern lower-level works focused on the individual Diophantine equation (and not on big machines aimed generally at classes of such equations) are relatively rare. The present volumefills this need...Summing Up: Recommended. Lower- and upper-division undergraduates and general readers. (D.V. Feldman, Choice, July, 2010)

Preface v
I Diophantine Equations
1(190)
I.1 Elementary Methods for Solving Diophantine Equations
3(64)
1.1 The Factoring Method
3(10)
1.2 Solving Diophantine Equations Using Inequalities
13(7)
1.3 The Parametric Method
20(9)
1.4 The Modular Arithmetic Method
29(7)
1.5 The Method of Mathematical Induction
36(11)
1.6 Fermat's Method of Infinite Descent (FMID)
47(11)
1.7 Miscellaneous Diophantine Equations
58(9)
I.2 Some Classical Diophantine Equations
67(50)
2.1 Linear Diophantine Equations
67(9)
2.2 Pythagorean Triples and Related Problems
76(12)
2.3 Other Remarkable Equations
88(29)
I.3 Pell-Type Equations
117(30)
3.1 Pell's Equation: History and Motivation
118(3)
3.2 Solving Pell's Equation
121(14)
3.3 The Equation ax2 - by2 = 1
135(5)
3.4 The Negative Pell's Equation
140(7)
I.4 Some Advanced Methods for Solving Diophantine Equations
147(44)
4.1 The Ring Z[ i] of Gaussian Integers
151(11)
4.2 The Ring of Integers of Q[ √d]
162(16)
4.3 Quadratic Reciprocity and Diophantine Equations
178(3)
4.4 Divisors of Certain Forms
181(10)
4.4.1 Divisors of a2 + b2
182(4)
4.4.2 Divisors of a2 + 2b2
186(2)
4.4.3 Divisors of a2 - 2b2
188(3)
II Solutions to Exercises and Problems
191(136)
II.1 Solutions to Elementary Methods for Solving Diophantine Equations
193(72)
1.1 The Factoring Method
193(9)
1.2 Solving Diophantine Equations Using Inequalities
202(11)
1.3 The Parametric Method
213(6)
1.4 The Modular Arithmetic Method
219(10)
1.5 The Method of Mathematical Induction
229(10)
1.6 Fermat's Method of Infinite Descent (FMID)
239(14)
1.7 Miscellaneous Diophantine Equations
253(12)
II.2 Solutions to Some Classical Diophantine Equations
265(24)
2.1 Linear Diophantine Equations
265(8)
2.2 Pythagorean Triples and Related Problems
273(5)
2.3 Other Remarkable Equations
278(11)
II.3 Solutions to Pell-Type Equations
289(20)
3.1 Solving Pell's Equation by Elementary Methods
289(9)
3.2 The Equation ax2 - by2 = 1
298(3)
3.3 The Negative Pell's Equation
301(8)
II.4 Solutions to Some Advanced Methods in Solving Diophantine Equations
309(18)
4.1 The Ring Z[ i] of Gaussian Integers
309(5)
4.2 The Ring of Integers of Q[ √d]
314(8)
4.3 Quadratic Reciprocity and Diophantine Equations
322(2)
4.4 Divisors of Certain Forms
324(3)
References 327(4)
Glossary 331(10)
Index 341