Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Electrodynamics

4.28/5 (4470 ratings by Goodreads)
(Reed College, Oregon)
  • Formatas: PDF+DRM
  • Išleidimo metai: 29-Jun-2017
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108359382
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 29-Jun-2017
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108359382
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This well-known undergraduate electrodynamics textbook is now available in a more affordable printing from Cambridge University Press. The Fourth Edition provides a rigorous, yet clear and accessible treatment of the fundamentals of electromagnetic theory and offers a sound platform for explorations of related applications (AC circuits, antennas, transmission lines, plasmas, optics and more). Written keeping in mind the conceptual hurdles typically faced by undergraduate students, this textbook illustrates the theoretical steps with well-chosen examples and careful illustrations. It balances text and equations, allowing the physics to shine through without compromising the rigour of the math, and includes numerous problems, varying from straightforward to elaborate, so that students can be assigned some problems to build their confidence and others to stretch their minds. A Solutions Manual is available to instructors teaching from the book; access can be requested from the resources section at www.cambridge.org/electrodynamics.

Recenzijos

'Griffiths's book has come to dominate the American market in junior/senior E&M/electrodynamics textbooks to an extent that I have never seen any other textbook dominate any other undergraduate market - Griffiths's love of electrodynamics shines from every page Not merely clear and effective - it is joyful.' Dan Styer, Oberlin College, Ohio ' an ideal textbook for an intermediate Electrodynamics course for undergraduate students of Physics.' David Miller, University of Chicago ' an excellent book, very well organized and readable. The students loved it It is a time-tested and highly optimized book.' Steve Hagen, University of Florida 'Griffiths's classic undergraduate textbook on Electromagnetism has dominated the teaching of the subject at the advanced undergraduate level.' Shyam Erramilli, Boston University ' an excellent book about this classical topic written with Griffiths's customary clarity and in his very engaging style, so that, students tell me, it is a real pleasure to study from ' Eric Laenen, University of Amsterdam

Daugiau informacijos

This is a re-issued and affordable printing of the widely used undergraduate electrodynamics textbook.
Preface xii
Advertisement xiv
1 Vector Analysis
1(58)
1.1 Vector Algebra
1(12)
1.1.1 Vector Operations
1(3)
1.1.2 Vector Algebra: Component Form
4(3)
1.1.3 Triple Products
7(1)
1.1.4 Position, Displacement, and Separation Vectors
8(2)
1.1.5 How Vectors Transform
10(3)
1.2 Differential Calculus
13(11)
1.2.1 "Ordinary" Derivatives
13(1)
1.2.2 Gradient
13(3)
1.2.3 The Del Operator
16(1)
1.2.4 The Divergence
17(1)
1.2.5 The Curl
18(2)
1.2.6 Product Rules
20(2)
1.2.7 Second Derivatives
22(2)
1.3 Integral Calculus
24(14)
1.3.1 Line, Surface, and Volume Integrals
24(5)
1.3.2 The Fundamental Theorem of Calculus
29(1)
1.3.3 The Fundamental Theorem for Gradients
29(2)
1.3.4 The Fundamental Theorem for Divergences
31(3)
1.3.5 The Fundamental Theorem for Curls
34(2)
1.3.6 Integration by Parts
36(2)
1.4 Curvilinear Coordinates
38(7)
1.4.1 Spherical Coordinates
38(5)
1.4.2 Cylindrical Coordinates
43(2)
1.5 The Dirac Delta Function
45(7)
1.5.1 The Divergence of r/r2
45(1)
1.5.2 The One-Dimensional Dirac Delta Function
46(4)
1.5.3 The Three-Dimensional Delta Function
50(2)
1.6 The Theory of Vector Fields
52(7)
1.6.1 The Helmholtz Theorem
52(1)
1.6.2 Potentials
53(6)
2 Electrostatics
59(54)
2.1 The Electric Field
59(7)
2.1.1 Introduction
59(1)
2.1.2 Coulomb's Law
60(1)
2.1.3 The Electric Field
61(2)
2.1.4 Continuous Charge Distributions
63(3)
2.2 Divergence and Curl of Electrostatic Fields
66(12)
2.2.1 Field Lines, Flux, and Gauss's Law
66(5)
2.2.2 The Divergence of E
71(1)
2.2.3 Applications of Gauss's Law
71(6)
2.2.4 The Curl of E
77(1)
2.3 Electric Potential
78(13)
2.3.1 Introduction to Potential
78(2)
2.3.2 Comments on Potential
80(3)
2.3.3 Poisson's Equation and Laplace's Equation
83(1)
2.3.4 The Potential of a Localized Charge Distribution
84(4)
2.3.5 Boundary Conditions
88(3)
2.4 Work and Energy in Electrostatics
91(6)
2.4.1 The Work It Takes to Move a Charge
91(1)
2.4.2 The Energy of a Point Charge Distribution
92(2)
2.4.3 The Energy of a Continuous Charge Distribution
94(2)
2.4.4 Comments on Electrostatic Energy
96(1)
2.5 Conductors
97(16)
2.5.1 Basic Properties
97(2)
2.5.2 Induced Charges
99(4)
2.5.3 Surface Charge and the Force on a Conductor
103(2)
2.5.4 Capacitors
105(8)
3 Potentials
113(54)
3.1 Laplace's Equation
113(11)
3.1.1 Introduction
113(1)
3.1.2 Laplace's Equation in One Dimension
114(1)
3.1.3 Laplace's Equation in Two Dimensions
115(2)
3.1.4 Laplace's Equation in Three Dimensions
117(2)
3.1.5 Boundary Conditions and Uniqueness Theorems
119(2)
3.1.6 Conductors and the Second Uniqueness Theorem
121(3)
3.2 The Method of Images
124(6)
3.2.1 The Classic Image Problem
124(1)
3.2.2 Induced Surface Charge
125(1)
3.2.3 Force and Energy
126(1)
3.2.4 Other Image Problems
127(3)
3.3 Separation of Variables
130(21)
3.3.1 Cartesian Coordinates
131(10)
3.3.2 Spherical Coordinates
141(10)
3.4 Multipole Expansion
151(16)
3.4.1 Approximate Potentials at Large Distances
151(3)
3.4.2 The Monopole and Dipole Terms
154(3)
3.4.3 Origin of Coordinates in Multipole Expansions
157(1)
3.4.4 The Electric Field of a Dipole
158(9)
4 Electric Fields in Matter
167(43)
4.1 Polarization
167(6)
4.1.1 Dielectrics
167(1)
4.1.2 Induced Dipoles
167(3)
4.1.3 Alignment of Polar Molecules
170(2)
4.1.4 Polarization
172(1)
4.2 The Field of a Polarized Object
173(8)
4.2.1 Bound Charges
173(3)
4.2.2 Physical Interpretation of Bound Charges
176(3)
4.2.3 The Field Inside a Dielectric
179(2)
4.3 The Electric Displacement
181(4)
4.3.1 Gauss's Law in the Presence of Dielectrics
181(3)
4.3.2 A Deceptive Parallel
184(1)
4.3.3 Boundary Conditions
185(1)
4.4 Linear Dielectrics
185(25)
4.4.1 Susceptibility, Permittivity, Dielectric Constant
185(7)
4.4.2 Boundary Value Problems with Linear Dielectrics
192(5)
4.4.3 Energy in Dielectric Systems
197(5)
4.4.4 Forces on Dielectrics
202(8)
5 Magnetostatics
210(56)
5.1 The Lorentz Force Law
210(13)
5.1.1 Magnetic Fields
210(2)
5.1.2 Magnetic Forces
212(4)
5.1.3 Currents
216(7)
5.2 The Biot-Savart Law
223(6)
5.2.1 Steady Currents
223(1)
5.2.2 The Magnetic Field of a Steady Current
224(5)
5.3 The Divergence and Curl of B
229(14)
5.3.1 Straight-Line Currents
229(2)
5.3.2 The Divergence and Curl of B
231(2)
5.3.3 Ampere's Law
233(8)
5.3.4 Comparison of Magnetostatics and Electrostatics
241(2)
5.4 Magnetic Vector Potential
243(23)
5.4.1 The Vector Potential
243(6)
5.4.2 Boundary Conditions
249(3)
5.4.3 Multipole Expansion of the Vector Potential
252(14)
6 Magnetic Fields in Matter
266(30)
6.1 Magnetization
266(8)
6.1.1 Diamagnets, Paramagnets, Ferromagnets
266(1)
6.1.2 Torques and Forces on Magnetic Dipoles
266(5)
6.1.3 Effect of a Magnetic Field on Atomic Orbits
271(2)
6.1.4 Magnetization
273(1)
6.2 The Field of a Magnetized Object
274(5)
6.2.1 Bound Currents
274(3)
6.2.2 Physical Interpretation of Bound Currents
277(2)
6.2.3 The Magnetic Field Inside Matter
279(1)
6.3 The Auxiliary Field H
279(5)
6.3.1 Ampere's Law in Magnetized Materials
279(4)
6.3.2 A Deceptive Parallel
283(1)
6.3.3 Boundary Conditions
284(1)
6.4 Linear and Nonlinear Media
284(12)
6.4.1 Magnetic Susceptibility and Permeability
284(4)
6.4.2 Ferromagnetism
288(8)
7 Electrodynamics
296(60)
7.1 Electromotive Force
296(16)
7.1.1 Ohm's Law
296(7)
7.1.2 Electromotive Force
303(2)
7.1.3 Motional emf
305(7)
7.2 Electromagnetic Induction
312(20)
7.2.1 Faraday's Law
312(5)
7.2.2 The Induced Electric Field
317(4)
7.2.3 Inductance
321(7)
7.2.4 Energy in Magnetic Fields
328(4)
7.3 Maxwell's Equations
332(24)
7.3.1 Electrodynamics Before Maxwell
332(2)
7.3.2 How Maxwell Fixed Ampere's Law
334(3)
7.3.3 Maxwell's Equations
337(1)
7.3.4 Magnetic Charge
338(2)
7.3.5 Maxwell's Equations in Matter
340(2)
7.3.6 Boundary Conditions
342(14)
8 Conservation Laws
356(26)
8.1 Charge and Energy
356(4)
8.1.1 The Continuity Equation
356(1)
8.1.2 Poynting's Theorem
357(3)
8.2 Momentum
360(13)
8.2.1 Newton's Third Law in Electrodynamics
360(2)
8.2.2 Maxwell's Stress Tensor
362(4)
8.2.3 Conservation of Momentum
366(4)
8.2.4 Angular Momentum
370(3)
8.3 Magnetic Forces Do No Work
373(9)
9 Electromagnetic Waves
382(54)
9.1 Waves in One Dimension
382(11)
9.1.1 The Wave Equation
382(3)
9.1.2 Sinusoidal Waves
385(3)
9.1.3 Boundary Conditions: Reflection and Transmission
388(3)
9.1.4 Polarization
391(2)
9.2 Electromagnetic Waves in Vacuum
393(8)
9.2.1 The Wave Equation for E and B
393(1)
9.2.2 Monochromatic Plane Waves
394(4)
9.2.3 Energy and Momentum in Electromagnetic Waves
398(3)
9.3 Electromagnetic Waves in Matter
401(11)
9.3.1 Propagation in Linear Media
401(2)
9.3.2 Reflection and Transmission at Normal Incidence
403(2)
9.3.3 Reflection and Transmission at Oblique Incidence
405(7)
9.4 Absorption and Dispersion
412(13)
9.4.1 Electromagnetic Waves in Conductors
412(4)
9.4.2 Reflection at a Conducting Surface
416(1)
9.4.3 The Frequency Dependence of Permittivity
417(8)
9.5 Guided Waves
425(11)
9.5.1 Wave Guides
425(3)
9.5.2 TE Waves in a Rectangular Wave Guide
428(3)
9.5.3 The Coaxial Transmission Line
431(5)
10 Potentials and Fields
436(30)
10.1 The Potential Formulation
436(8)
10.1.1 Scalar and Vector Potentials
436(3)
10.1.2 Gauge Transformations
439(1)
10.1.3 Coulomb Gauge and Lorenz Gauge
440(2)
10.1.4 Lorentz Force Law in Potential Form
442(2)
10.2 Continuous Distributions
444(7)
10.2.1 Retarded Potentials
444(5)
10.2.2 Jefimenko's Equations
449(2)
10.3 Point Charges
451(15)
10.3.1 Lienard-Wiechert Potentials
451(5)
10.3.2 The Fields of a Moving Point Charge
456(10)
11 Radiation
466(36)
11.1 Dipole Radiation
466(16)
11.1.1 What is Radiation?
466(1)
11.1.2 Electric Dipole Radiation
467(6)
11.1.3 Magnetic Dipole Radiation
473(4)
11.1.4 Radiation from an Arbitrary Source
477(5)
11.2 Point Charges
482(20)
11.2.1 Power Radiated by a Point Charge
482(6)
11.2.2 Radiation Reaction
488(4)
11.2.3 The Mechanism Responsible for the Radiation Reaction
492(10)
12 Electrodynamics and Relativity
502(73)
12.1 The Special Theory of Relativity
502(30)
12.1.1 Einstein's Postulates
502(6)
12.1.2 The Geometry of Relativity
508(11)
12.1.3 The Lorentz Transformations
519(6)
12.1.4 The Structure of Spacetime
525(7)
12.2 Relativistic Mechanics
532(18)
12.2.1 Proper Time and Proper Velocity
532(3)
12.2.2 Relativistic Energy and Momentum
535(2)
12.2.3 Relativistic Kinematics
537(5)
12.2.4 Relativistic Dynamics
542(8)
12.3 Relativistic Electrodynamics
550(25)
12.3.1 Magnetism as a Relativistic Phenomenon
550(3)
12.3.2 How the Fields Transform
553(9)
12.3.3 The Field Tensor
562(3)
12.3.4 Electrodynamics in Tensor Notation
565(4)
12.3.5 Relativistic Potentials
569(6)
A Vector Calculus in Curvilinear Coordinates
575(7)
A.1 Introduction
575(1)
A.2 Notation
575(1)
A.3 Gradient
576(1)
A.4 Divergence
577(2)
A.5 Curl
579(2)
A.6 Laplacian
581(1)
B The Helmholtz Theorem
582(3)
C Units
585(4)
Index 589
David J. Griffiths is Emeritus Professor of Physics from Reed College, Oregon, where he taught physics for over thirty years. He received his B.A. and Ph.D. from Harvard University, where he studied elementary particle theory.