Atnaujinkite slapukų nuostatas

Introduction to Electromagnetic and Microwave Engineering [Kietas viršelis]

  • Formatas: Hardback, 720 pages, aukštis x plotis x storis: 261x183x39 mm, weight: 1463 g
  • Serija: Wiley Series in Microwave and Optical Engineering
  • Išleidimo metai: 16-Jan-1998
  • Leidėjas: Wiley-Interscience
  • ISBN-10: 0471177814
  • ISBN-13: 9780471177814
  • Formatas: Hardback, 720 pages, aukštis x plotis x storis: 261x183x39 mm, weight: 1463 g
  • Serija: Wiley Series in Microwave and Optical Engineering
  • Išleidimo metai: 16-Jan-1998
  • Leidėjas: Wiley-Interscience
  • ISBN-10: 0471177814
  • ISBN-13: 9780471177814
This comprehensive text and reference tool for students of electrical engineering begins with a presentation of the foundations of electromagnetic theory appropriate for sophomore- and junior-level students, emphasizing vector mathematics, Maxwell's equations, and statics. It then introduces microwave engineering and its applications, including magnetostatistics, transmission lines, reflection and transmission at plane boundaries, and two- and three-dimensional waveguides. Tutorials on MathCad and PSpice in the appendix to aid instructors are included, as well as some 300 homework assignments. Annotation c. by Book News, Inc., Portland, Or.

Filled with illustrations, examples and approximately 300 homework problems, this accessible and informative text provides an extensive treatment of electromagnetism and microwave engineering with particular emphasis on microwave and telecommunications applications. Also stresses computational electromagnetics through the use of MathCad and finite element methods to elucidate design problems, analysis and applications. Tutorials on the use of MathCad and PSpice are included. An accessible textbook for students and valuable reference for engineers already in the field.
Preface xv
1 Introduction
1(8)
1.1 Electromagnetics
1(1)
1.2 Microwave Engineering
1(1)
1.3 Dimensions and Units
2(2)
1.4 The Frequency Spectrum
4(2)
1.5 Biographical Data
6(3)
2 Vector Mathematics I
9(37)
2.1 Introduction
9(1)
2.2 Scalar Fields
9(1)
2.3 Vector Fields
10(2)
2.4 Coordinate Systems
12(11)
2.4.1 Cartesian Coordinates
13(3)
2.4.2 Cylindrical Coordinates
16(3)
2.4.3 Spherical Coordinates
19(4)
2.5 Vector Arithmetic
23(11)
2.5.1 Magnitude
23(1)
2.5.2 Addition
24(1)
2.5.3 Multiplication by a Scalar
25(1)
2.5.4 Scalar or Dot Product
25(2)
2.5.5 Vector or Cross Product
27(3)
2.5.6 Vector Identities
30(1)
2.5.7 Vector Arithmetic Using MathCad
30(4)
2.5.7.1 Vector Definition
31(1)
2.5.7.2 Magnitude of a Vector Using MathCad
31(1)
2.5.7.3 Multiplication by a Scalar Using MathCad
32(1)
2.5.7.4 Dot Product Using MathCad
32(1)
2.5.7.5 Cross Product Using MathCad
33(1)
2.6 Line Integrals
34(4)
2.6.1 Line Integral Using MathCad
36(2)
2.7 Surface Integrals
38(4)
2.7.1 Surface Integral Using MathCad
41(1)
Problems
42(4)
3 Electromagnetic Field Definitions
46(30)
3.1 Introduction
46(1)
3.2 Electric Charge
46(5)
3.2.1 Volume Charge Density
47(2)
3.2.2 Surface Charge Density
49(1)
3.2.3 Line Charge Density
50(1)
3.2.4 Point Charge
51(1)
3.2.5 Charge Equivalences
51(1)
3.3 Electric Current
51(6)
3.3.1 Volume Current Density
52(2)
3.3.2 Surface Current Density
54(1)
3.3.3 Line Current
55(1)
3.3.4 Current Equivalences
56(1)
3.4 Electric Field Intensity
57(2)
3.5 Electromotive Force (emf) or Voltage
59(1)
3.6 Electric Flux Density
59(2)
3.7 Magnetic Flux Density
61(2)
3.8 Magnetic Field Intensity
63(1)
3.9 Magnetomotive Force (mmf)
64(1)
3.10 Constitutive Equations
65(4)
3.10.1 Dielectric Materials and Permittivity
65(1)
3.10.2 Magnetic Materials and Permeability
66(1)
3.10.3 Conductors and Conductivity
67(1)
3.10.4 Linearity and Superposition
68(1)
Problems
69(7)
4 Maxwell's Integral Equations
76(42)
4.1 Introduction
76(1)
4.2 Gauss's Law for Electric Flux Density
76(7)
4.2.1 Electric Field of a Point Charge
77(3)
4.2.2 Electric Field of a Uniform Line Charge
80(2)
4.2.3 Electric Field of a Uniform Surface Charge
82(1)
4.3 Gauss's Law for Magnetic Flux Density
83(1)
4.4 Conservation of Charge
83(6)
4.4.1 Relaxation Time Constant in a Conductor
84(3)
4.4.2 Electric Field from a Point Current Source
87(2)
4.5 Ampere-Maxwell Law
89(9)
4.5.1 Magnetic Field of a Current-Carrying Wire
92(2)
4.5.2 Magnetic Field of a Uniform Surface Current
94(1)
4.5.3 Magnetic Field of a Point Current Source
95(1)
4.5.4 Magnetic Field of a Point Displacement Current Source
96(2)
4.6 Faraday-Maxwell Law
98(8)
4.6.1 Moving Wire--Constant Magnetic Field
99(3)
4.6.2 Stationary Wire--Changing Magnetic Field
102(4)
4.7 Boundary Conditions
106(7)
4.7.1 Tangential Magnetic and Electric Field Intensities
107(3)
4.7.2 Normal Electric and Magnetic Flux Densities and Normal Current Density
110(3)
Problems
113(5)
5 Vector Mathematics II and Maxwell's Equations
118(42)
5.1 Introduction
118(1)
5.2 Gradient
118(6)
5.2.1 Definition
118(1)
5.2.2 Cartesian Coordinates and the Del Operator
119(1)
5.2.3 Cylindrical and Spherical Coordinates
120(1)
5.2.4 MathCad Evaluation of the Gradient
121(3)
5.3 Divergence
124(12)
5.3.1 Cartesian Coordinates and the Del Operator
125(2)
5.3.2 Cylindrical and Spherical Coordinates
127(3)
5.3.3 The Divergence Theorem
130(2)
5.3.4 Differential Form of Gauss's Laws
132(1)
5.3.5 The Equation of Continuity
133(1)
5.3.6 MathCad Evaluation of the Divergence
134(2)
5.4 Laplacian
136(1)
5.5 Curl
137(11)
5.5.1 Cartesian Coordinates and the Del Operator
138(2)
5.5.2 Cylindrical and Spherical Coordinates
140(5)
5.5.3 Stokes's Theorem
145(2)
5.5.4 Differential Forms of the Ampere-Maxwell and the Faraday-Maxwell Laws
147(1)
5.6 Vector Identities
148(1)
5.7 Vector Laplacian
149(1)
5.8 Summary of Maxwell's Equations
150(1)
5.9 Wave Equation and Homogeneous Solution
151(5)
Problems
156(4)
6 Electrostatics
160(70)
6.1 Introduction
160(1)
6.2 Electric Field Intensity for a Charge Distribution
161(7)
6.2.1 Multiple Point Charges
162(2)
6.2.2 Continuous Charge Distributions
164(4)
6.3 Electric Potential and Work in the Electrostatic Field
168(14)
6.3.1 Electric Potential of a Point Charge
171(1)
6.3.2 Multiple Point Charges and Continuous Charge Distributions
172(4)
6.3.3 Electric Dipole
176(3)
6.3.4 Line Charge and Paired Line Charge
179(3)
6.4 Fields for Unknown Charge Distributions
182(3)
6.5 Energy in the Electric Field
185(3)
6.6 Capacitance
188(9)
6.6.1 Parallel Plate Capacitor
190(6)
6.6.2 Coaxial Cylinders
196(1)
6.7 Method of Images
197(10)
6.7.1 Point Charge Over a Conducting Plane
197(2)
6.7.2 Point Charge Over a Dielectric
199(2)
6.7.3 Parallel Circular Cylindrical Conductors
201(6)
6.8 Poisson's and Laplace's Equations
207(11)
6.8.1 Poisson's Equation
207(2)
6.8.2 Laplace's Equation
209(1)
6.8.3 Numerical Techniques
209(9)
6.8.3.1 The Finite Difference Method
210(8)
6.8.3.2 The Finite Element Method
218(1)
Problems
218(12)
7 Steady Currents
230(22)
7.1 Introduction
230(1)
7.2 Power Loss
230(2)
7.3 Resistance and Conductance
232(9)
7.3.1 Cylindrical Resistor
232(7)
7.3.2 Coaxial Conductor
239(2)
7.4 Equivalent Circuit
241(5)
7.5 Skin Depth and Surface Resistance
246(3)
Problems
249(3)
8 Magnetostatics
252(41)
8.1 Introduction
252(1)
8.2 Magnetic Field Intensity of a Current Distribution
253(6)
8.2.1 Magnetic Field Intensity of a Current Element
253(2)
8.2.2 Magnetic Field Intensity of Continuous Current Distribution
255(4)
8.3 Magnetic Field of a Current Loop
259(3)
8.4 Magnetic Energy
262(1)
8.5 Self-Inductance
263(12)
8.5.1 A Solenoid: External Inductance
266(2)
8.5.2 Coaxial Cylinders: External Inductance
268(5)
8.5.3 A Current-Carrying Wire: Internal Inductance
273(2)
8.6 Mutual Inductance
275(4)
8.6.1 Mutual Inductance of a Solenoid with Two Windings
278(1)
8.6.2 Mutual Inductance of a Wire and a Rectangular Loop
279(1)
8.7 Magnetic Circuits
279(7)
Problems
286(7)
9 Transmission Lines
293(43)
9.1 Introduction
293(1)
9.2 Time Harmonic Form of Maxwell's Equations
293(3)
9.2.1 Duality
295(1)
9.3 Transverse Electromagnetic Waves
296(9)
9.3.1 Cylindrical Structures
299(2)
9.3.2 Propagation Constant
301(2)
9.3.3 Wavelength and Wave Velocity
303(2)
9.4 Line Voltage and Current
305(2)
9.5 Transmission Line Parameters: Inductance, Capacitance, and Conductance per Unit Length
307(3)
9.6 Transmission Line Equations
310(5)
9.6.1 Derivation from Maxwell's Equations
311(2)
9.6.2 Imperfectly Conducting Lines
313(1)
9.6.3 Complete Transmission Line Equations
314(1)
9.6.4 Derivation from Circuit Theory
314(1)
9.7 Voltage and Current Wave Equations; Propagation Constant; Characteristic Impedance
315(9)
9.7.1 Circuit Representation of the Transmission Line
317(1)
9.7.2 Distortion, Dispersion, and Distortionless Lines
318(5)
9.7.3 Low-Loss Formulas for r and Z(0)
323(1)
9.8 Printed Circuit Transmission Lines
324(2)
9.8.1 Conventional Waveguides (Rectangular, Circular, and Coaxial)
325(1)
9.8.2 Strip Transmission Lines
326(1)
9.9 Microstrip Line Parameters
326(5)
9.9.1 Simple Approximations to Characteristic Impedance
328(1)
9.9.2 Design Formulas
328(3)
9.10 Coplanar Waveguides
331(2)
9.11 Triplate
333(1)
Problems
333(3)
10 The Terminated Transmission Line
336(81)
10.1 Introduction
336(1)
10.2 Time Harmonic Solutions
336(9)
10.2.1 Lossless Transmission Line
339(1)
10.2.2 Power on the Transmission Line
339(2)
10.2.3 Impedance Transformation
341(1)
10.2.4 Impedance Transformation on a Lossless Line
342(3)
10.3 Reflection Coefficient
345(10)
10.3.1 The Gamma Plane
347(5)
10.3.2 The Normalized Impedance Plane
352(3)
10.4 Smith Chart
355(8)
10.4.1 Uses for the Smith Chart
360(1)
10.4.2 Smith Chart with Admittance Coordinates
361(2)
10.5 Standing Waves and Standing Wave Ratio
363(6)
10.6 Resonant Circuits
369(13)
10.6.1 Natural Frequency: Shorted and Open Lossless Lines
375(3)
10.6.2 Resonant Frequency
378(4)
10.7 Matching Networks
382(16)
10.7.1 Quarter-Wave Matching Section
383(3)
10.7.2 Single Stub Matching
386(2)
10.7.3 Broad-Band Matching
388(2)
10.7.4 PSPICE Simulation of Transmission Line Circuits
390(8)
10.7.4.1 PSPICE Quarter-Wave Transformers
391(2)
10.7.4.2 Stub Matching Using PSPICE
393(5)
10.8 Transients on Transmission Lines
398(11)
10.8.1 PSPICE Transient Analysis of Transmission Lines
404(3)
10.8.2 Distortion Revisited
407(2)
Problems
409(8)
11 Reflection and Transmission at Plane Boundaries and Two-Dimensional Waveguides
417(72)
11.1 Introduction
417(1)
11.2 Propagation Vector
417(4)
11.3 Propagation Constant and Intrinsic Impedance Formulas
421(4)
11.3.1 Perfect Dielectric Medium
421(1)
11.3.2 Good or Low-Loss Dielectric
422(1)
11.3.3 Good Conductors
423(1)
11.3.4 General Formulas
424(1)
11.3.5 Distortion
424(1)
11.4 Vector Field Polarization
425(2)
11.5 Power and Energy Density: The Poynting Vector
427(8)
11.5.1 Instantaneous Power and Energy
428(4)
11.5.2 Complex Power and Energy
432(3)
11.6 Reflection and Transmission at Plane Boundaries
435(21)
11.6.1 Relations Between Propagation Vectors and Snell's Law
435(7)
11.6.1.1 Snell's Law for Perfect Dielectrics
437(4)
11.6.1.2 Snell's Law for Perfect Dielectric to Conductor Boundary
441(1)
11.6.2 Resolution of Incident Field into TE and TM Fields
442(3)
11.6.3 TE Wave or Perpendicular Polarization
445(6)
11.6.3.1 Perfect Dielectric to Perfect Dielectric Boundary
448(1)
11.6.3.2 Perfect Dielectric to Conductor Boundary
449(2)
11.6.4 TM Wave or Parallel Polarization
451(5)
11.6.4.1 Perfect Dielectric to Perfect Dielectric Boundary
453(3)
11.6.4.2 Perfect Dielectric to Conductor Boundary
456(1)
11.7 Stratified Media
456(7)
11.8 Parallel Plate Waveguide
463(9)
11.8.1 Power and Attenuation
470(2)
11.9 Symmetric Dielectric Slab Waveguide
472(11)
11.9.1 Transverse Electric (TE) Wave Solutions
475(4)
11.9.2 Transverse Magnetic (TM) Wave Solutions
479(2)
11.9.3 Wave Impedance and Power
481(2)
Problems
483(6)
12 Three-Dimensional Waveguides and Resonators
489(63)
12.1 Introduction
489(1)
12.2 Transverse Electric and Transverse Magnetic Wave Solutions
489(3)
12.2.1 Transverse Electric Waves
489(3)
12.2.2 Transverse Magnetic Waves
492(1)
12.3 Separation of Variables: Solution of the Modal Equation
492(4)
12.3.1 Separation of Variables in Rectangular Coordinates
493(2)
12.3.2 Separation of Variables in Cylindrical Coordinates
495(1)
12.4 Rectangular Waveguides
496(6)
12.4.1 Transverse Electric Waves in the Rectangular Guide
496(5)
12.4.2 Transverse Magnetic Waves in the Rectangular Guide
501(1)
12.5 The Dominant TE(10) Mode in the Rectangular Waveguide
502(9)
12.5.1 TE(10) Mode Time Average Power
506(1)
12.5.2 Attenuation Due to Imperfectly Conducting Walls
506(1)
12.5.3 Attenuation Due to Imperfect Dielectric
507(1)
12.5.4 Design Considerations
508(1)
12.5.5 Physical Fields
509(2)
12.6 Circular Waveguides
511(10)
12.6.1 Transverse Magnetic Modes in the Circular Waveguide
511(4)
12.6.1.1 Time Average Power and Attenuation for the TM Mode
514(1)
12.6.2 Transverse Electric Modes in the Circular Waveguide
515(6)
12.6.2.1 Time Average Power and Attenuation for the TE Mode
518(3)
12.7 Dielectric Rod Waveguide
521(12)
12.7.1 Boundary Conditions and Field Solutions
523(2)
12.7.2 TM and TE Modes when n = 0
525(2)
12.7.3 Hybrid Modes: n = 1, 2, 3,...; The Dominant Mode
527(6)
12.7.3.1 Hybrid Modes when n = 2, 3, 4
529(1)
12.7.3.2 Hybrid Modes when n = 1; The Dominant Mode
530(3)
12.8 Resonant Cavities
533(13)
12.8.1 Rectangular Resonant Cavity
535(9)
12.8.1.1 Cavity Coupling
538(3)
12.8.1.2 Cavity Perturbations: Tuning
541(3)
12.8.2 Circular Resonant Cavity
544(2)
Problems
546(6)
13 Microwave Networks
552(73)
13.1 Introduction
552(1)
13.2 Voltage, Current, and Impedance
552(4)
13.3 One-port, Two-port, and N-Port Junctions
556(3)
13.4 Z and Y Matrix Description of N-Port Junctions
559(11)
13.4.1 Z and Y Matrices for Two-Port Networks; Series and Parallel Connections of Two-Port Networks
564(6)
13.5 Voltage-Current Transmission (ABCD) Matrix Description of a Two-Port Junction
570(3)
13.6 Scattering Matrix Description of an N-Port Junction
573(17)
13.6.1 Symmetry Property of the Scattering Matrix
579(1)
13.6.2 Unitary Property of the Scattering Matrix
580(2)
13.6.3 Matched N-Port
582(1)
13.6.4 Shift of Port Plane
582(2)
13.6.5 Scattering Matrix with a Load Connected to One Port
584(2)
13.6.6 Conversion Between the Z and Y Matrices and the Scattering Matrix
586(4)
13.6.7 Conversion from the ABCD Matrix to the Scattering Matrix
590(1)
13.7 Examples of the Scattering Matrix for Passive Devices
590(26)
13.7.1 One-Port Devices
591(3)
13.7.2 Two-Port Devices
594(8)
13.7.2.1 Inductive Iris in a Rectangular Waveguide
595(3)
13.7.2.2 Capacitive Iris in a Rectangular Waveguide
598(2)
13.7.2.3 Change in Height in the Rectangular Waveguide
600(2)
13.7.3 Three-Port Device: Power Divider
602(3)
13.7.4 Four-Port Device: Directional Coupler
605(11)
13.7.4.1 Definition and Properties
605(5)
13.7.4.2 Branch Line Coupler
610(6)
13.8 S-Parameter Measurements
616(5)
13.8.1 Traditional Vector Network Analyzers
616(1)
13.8.2 Six-Port Network Analyzers
616(5)
Problems
621(4)
14 Radiation and Antennas
625(51)
14.1 Introduction
625(1)
14.2 Field of an Oscillating Current Element
625(9)
14.2.1 Field of a Time Harmonic Current on a Semi-infinite Wire
626(2)
14.2.2 Field of a Time Harmonic Current Element Located at the Origin
628(2)
14.2.3 Near or Quasi-stationary Field
630(1)
14.2.4 Far or Radiation Field
630(1)
14.2.5 Time Average Power Density and Radiated Power
631(3)
14.3 Antenna Parameters
634(4)
14.3.1 Antenna Patterns
634(1)
14.3.2 Directivity
635(2)
14.3.3 Radiation Resistance
637(1)
14.3.4 Input Impedance and Efficiency
637(1)
14.4 Thin Linear Antennas
638(12)
14.4.1 Filamentary Current
638(2)
14.4.2 Far Field--Power Density and Power
640(2)
14.4.3 Short Antenna
642(3)
14.4.4 Half-Wave Dipole, 2L = XXX/2
645(3)
14.4.5 Full-Wave Dipole, 2L = XXX
648(2)
14.5 Antenna Arrays
650(15)
14.5.1 Pattern Multiplication
651(1)
14.5.2 Two-Element Arrays
652(6)
14.5.2.1 Pattern Synthesis
654(4)
14.5.3 Uniform Linear Arrays
658(7)
14.5.3.1 Uniform Linear Broadside Array
661(3)
14.5.3.2 Uniform Linear End-Fire Array
664(1)
14.6 Special Antenna Configurations
665(8)
14.6.1 Horn Antennas
665(2)
14.6.2 Reflector Antennas
667(6)
14.6.2.1 Sheet Reflectors
667(1)
14.6.2.2 Corner Reflector
667(5)
14.6.2.3 Parabolic Reflector
672(1)
Problems
673(3)
Appendix A Material Constants 676(2)
Appendix B Introduction to MathCad 678(6)
B.1 Variable Definition 678(2)
B.2 Vector and Matrices: Definitions and Operations 680(2)
B.3 Other Useful Functions 682(2)
Appendix C Bessel Functions 684(8)
C.1 Bessel's Equation: Series Solution and Asymptotic Forms 684(3)
C.2 Derivative Formulas and Recursion Relations 687(1)
C.3 Integral Relations 688(2)
C.4 Modified Bessel Functions 690(2)
Index 692
Paul R. Karmel is the author of Introduction to Electromagnetic and Microwave Engineering, published by Wiley.

Gabriel D. Colef is the author of Introduction to Electromagnetic and Microwave Engineering, published by Wiley.

Raymond L. Camisa is the author of Introduction to Electromagnetic and Microwave Engineering, published by Wiley.