|
|
xiii | |
Foreword |
|
xvii | |
Preface |
|
xxi | |
|
|
1 | (8) |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
2 | (3) |
|
1.4 No-Arbitrage Principle |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (2) |
|
Chapter 2 Futures and Forwards |
|
|
9 | (16) |
|
2.1 Forward Contracts: Definitions |
|
|
9 | (2) |
|
|
11 | (3) |
|
2.3 Why To Use Forwards And Futures? |
|
|
14 | (1) |
|
2.4 The Fair Delivery Price: The Forward Price |
|
|
15 | (8) |
|
2.4.1 The General Approach |
|
|
15 | (2) |
|
|
17 | (1) |
|
2.4.2.1 Assets that Provide a Known Income |
|
|
17 | (2) |
|
2.4.2.2 Assets that Provide an Income Proportional to Its Price |
|
|
19 | (2) |
|
2.4.3 The Price of a Forward Contract |
|
|
21 | (1) |
|
|
21 | (1) |
|
2.4.4.1 The Case of a Known Income |
|
|
22 | (1) |
|
2.4.4.2 Assets that Provide an Income Proportional to Its Price |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (2) |
|
|
25 | (20) |
|
|
25 | (2) |
|
3.2 The Intrinsic Value of An Option |
|
|
27 | (1) |
|
3.3 Some Properties Of Option Prices |
|
|
27 | (6) |
|
3.3.1 The Price of an Option vs the Price of an Asset |
|
|
28 | (1) |
|
3.3.2 The Role of the strike price |
|
|
29 | (1) |
|
3.3.3 The Role of the Price of the Underlying Asset |
|
|
29 | (1) |
|
3.3.4 The Role of Interest Rates |
|
|
30 | (1) |
|
3.3.5 The Role of Volatility |
|
|
31 | (1) |
|
3.3.6 The Role of Time to Maturity |
|
|
31 | (1) |
|
3.3.7 The Put-Call Parity |
|
|
32 | (1) |
|
3.4 Speculation With Options |
|
|
33 | (2) |
|
3.5 Some Classical Strategies |
|
|
35 | (2) |
|
|
35 | (1) |
|
|
36 | (1) |
|
3.6 Draw Your Strategy With Python |
|
|
37 | (5) |
|
|
42 | (1) |
|
|
43 | (2) |
|
|
45 | (10) |
|
|
45 | (1) |
|
4.2 Forward Start Options |
|
|
46 | (1) |
|
|
47 | (1) |
|
4.3 Path-Dependent Options |
|
|
47 | (5) |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (1) |
|
4.4 Spread and Basket Options |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
53 | (2) |
|
Chapter 5 The Binomial Model |
|
|
55 | (54) |
|
5.1 The Single-Period Binomial Model |
|
|
55 | (14) |
|
5.1.1 Relationship between European Options and Their Underlying in the Binomial Model |
|
|
59 | (1) |
|
5.1.2 Replication Portfolio for European Options |
|
|
60 | (4) |
|
5.1.3 The Risk-neutral Valuation |
|
|
64 | (3) |
|
5.1.4 Link the Model to the Market |
|
|
67 | (2) |
|
5.2 The Multi-Period Binomial Model |
|
|
69 | (18) |
|
5.2.1 Adjusting the Parameters |
|
|
72 | (2) |
|
5.2.2 Pricing a European Option |
|
|
74 | (1) |
|
5.2.2.1 Extended Framework |
|
|
74 | (10) |
|
5.2.2.2 Simplified Framework |
|
|
84 | (1) |
|
|
84 | (3) |
|
5.3 The Greeks In The Binomial Model |
|
|
87 | (6) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
5.3.6 Approximating the Price Function |
|
|
92 | (1) |
|
5.4 Coding The Binomial Model |
|
|
93 | (12) |
|
|
105 | (1) |
|
|
106 | (3) |
|
Chapter 6 A Continuous-time Pricing Model |
|
|
109 | (38) |
|
6.1 Creating Some Intuition |
|
|
109 | (4) |
|
6.2 The Black-Scholes-Merton Framework |
|
|
113 | (1) |
|
6.3 The Black-Scholes-Merton Equation |
|
|
114 | (2) |
|
6.4 The Black-Scholes-Merton Formula |
|
|
116 | (4) |
|
6.5 The Black-Scholes-Merton Model From a Probabilistic Perspective |
|
|
120 | (6) |
|
6.6 The Black-Scholes-Merton Price and the Binomial Price |
|
|
126 | (1) |
|
6.7 The Greeks in the Black-Scholes-Merton Model |
|
|
127 | (12) |
|
|
128 | (4) |
|
|
132 | (2) |
|
|
134 | (3) |
|
|
137 | (2) |
|
|
139 | (2) |
|
6.8.1 Black-Scholes-Merton with Dividends |
|
|
140 | (1) |
|
6.8.2 Black-Scholes-Merton for Foreign-Exchange |
|
|
140 | (1) |
|
6.8.3 Black-scholes-Merton for Futures |
|
|
141 | (1) |
|
6.9 Drawbacks of the Black-Scholes-Merton Model |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
143 | (4) |
|
Chapter 7 Monte Carlo Methods |
|
|
147 | (22) |
|
7.1 The Need of General Option Pricing Tools |
|
|
147 | (1) |
|
7.2 Mathematical Foundations of Monte Carlo Methods |
|
|
148 | (7) |
|
7.2.1 Sample Means as Estimators of Theoretical Expectations |
|
|
150 | (1) |
|
7.2.2 The Laws of Large Numbers |
|
|
151 | (3) |
|
7.2.3 The Central Limit Theorem |
|
|
154 | (1) |
|
7.3 Option Pricing With Monte Carlo Methods |
|
|
155 | (7) |
|
7.3.1 European Options that Depend Only on the Final Value of the Asset |
|
|
156 | (2) |
|
7.3.2 European Options that Depend on the Path of Asset Prices |
|
|
158 | (4) |
|
7.4 European Options That Depend on the Final Price of Two Assets |
|
|
162 | (3) |
|
|
165 | (1) |
|
|
165 | (4) |
|
|
169 | (8) |
|
8.1 Historical Volatilities |
|
|
169 | (2) |
|
|
171 | (1) |
|
8.3 The Implied Volatility |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
175 | (2) |
|
Chapter 9 Replicating Portfolios |
|
|
177 | (14) |
|
9.1 Replicating Portfolios for the Binomial Model |
|
|
177 | (4) |
|
9.2 Replicating Portfolios for the Black-Scholes-Merton Mode |
|
|
181 | (6) |
|
|
187 | (1) |
|
|
188 | (3) |
|
Appendix A Introduction to Python |
|
|
191 | (18) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
A.6 Rocking Like A Data Scientist |
|
|
195 | (11) |
|
|
196 | (1) |
|
|
197 | (4) |
|
|
201 | (5) |
|
|
206 | (1) |
|
|
207 | (2) |
|
Appendix B Introduction to Coding in Python |
|
|
209 | (16) |
|
B.1 Define Your Own Functions |
|
|
209 | (2) |
|
|
211 | (4) |
|
|
215 | (2) |
|
|
217 | (5) |
|
|
222 | (1) |
|
|
223 | (2) |
Bibliography |
|
225 | (2) |
Index |
|
227 | |