Atnaujinkite slapukų nuostatas

Introduction to Food Engineering 5th edition [Kietas viršelis]

4.07/5 (35 ratings by Goodreads)
(professor of food engineering at the University of California, Davis), (Professor of Food Engineering at The Ohio State University. He is also and Adjunct Professor at the University of California-Davis and Professor Emeritus at the Uni)
  • Formatas: Hardback, 900 pages, aukštis x plotis: 235x191 mm, weight: 1520 g, Contains 1 Digital (delivered electronically)
  • Serija: Food Science and Technology
  • Išleidimo metai: 12-Sep-2013
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0123985307
  • ISBN-13: 9780123985309
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 900 pages, aukštis x plotis: 235x191 mm, weight: 1520 g, Contains 1 Digital (delivered electronically)
  • Serija: Food Science and Technology
  • Išleidimo metai: 12-Sep-2013
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0123985307
  • ISBN-13: 9780123985309
Kitos knygos pagal šią temą:
The fourth edition of this leading textbook presents the engineering concepts and unit operations used in food processing in a classroom-proven and unique blend of principles with applications. Describing the application of a particular principle followed by the quantitative relationships that define the related processes, each chapter also includes solved examples and problems to evaluate reader comprehension.

Authors Singh and Heldman use their many years of teaching to present food engineering concepts in a logical progression that covers the standard course curriculum making it easily adaptable for each classroom.

WHY ADOPT THIS NEW EDITION?
* NEW CHAPTERS ON:
- Supplemental Processes
- Filtration
- Sedimentation
- Centrifugation
- Mixing
- Extrusion Processes for Foods
- Packaging Concepts
- Shelf Life of Foods
* EXPANDED INFORMATION ON:
- Transport of granular foods and powders
- Process controls and measurements
- Emerging technologies such as high pressure and pulsed
- Electric field Design of plate heat exchangers
- Impact of fouling in heat transfer processes
- Use of dimensional analysis in solving problems
* Author Web site with animated versions of figures
* Examples throughout each chapter, presented in "Given - Approach - Solution" format for clear presentation of key concepts
* End of Chapter Problems to assess comprehension
* List of Symbols
* "Advanced" level questions called out in a separate section
Key equations highlighted
* Written to follow the typical Food Engineering course, making it easily adaptable for each classroom

Daugiau informacijos

New edition of a bestselling textbook that expertly guides readers through the latest information in Food Engineering!
About the Authors xvii
Foreword xix
Preface xxi
Chapter 1 Introduction
1(64)
1.1 Dimensions
1(1)
1.2 Engineering Units
2(8)
1.2.1 Base Units
2(1)
1.2.2 Derived Units
3(1)
1.2.3 Supplementary Units
4(6)
1.3 System
10(1)
1.4 State of a System
11(2)
1.4.1 Extensive Properties
12(1)
1.4.2 Intensive Properties
13(1)
1.5 Density
13(2)
1.6 Concentration
15(2)
1.7 Moisture Content
17(3)
1.8 Temperature
20(2)
1.9 Pressure
22(4)
1.10 Enthalpy
26(1)
1.11 Equation of State and Perfect Gas Law
26(1)
1.12 Phase Diagram of Water
27(2)
1.13 Conservation of Mass
29(3)
1.13.1 Conservation of Mass for an Open System
30(2)
1.13.2 Conservation of Mass for a Closed System
32(1)
1.14 Material Balances
32(9)
1.15 Thermodynamics
41(1)
1.16 Laws of Thermodynamics
42(1)
1.16.1 First Law of Thermodynamics
42(1)
1.16.2 Second Law of Thermodynamics
42(1)
1.17 Energy
43(2)
1.18 Energy Balance
45(1)
1.19 Energy Balance for a Closed System
45(10)
1.19.1 Heat
45(1)
1.19.2 Work
46(9)
1.20 Energy Balance for an Open System
55(1)
1.20.1 Energy Balance for Steady Flow Systems
56(1)
1.21 A Total Energy Balance
56(3)
1.22 Power
59(1)
1.23 Area
59(6)
Problems
60(3)
List of Symbols
63(1)
Bibliography
64(1)
Chapter 2 Fluid Flow in Food Processing
65(146)
2.1 Liquid Transport Systems
66(6)
2.1.1 Pipes for Processing Plants
66(2)
2.1.2 Types of Pumps
68(4)
2.2 Properties of Liquids
72(9)
2.2.1 Terminology Used in Material Response to Stress
72(1)
2.2.2 Density
73(1)
2.2.3 Viscosity
73(8)
2.3 Handling Systems for Newtonian Liquids
81(19)
2.3.1 The Continuity Equation
82(2)
2.3.2 Reynolds Number
84(4)
2.3.3 Entrance Region and Fully Developed Flow
88(2)
2.3.4 Velocity Profile in a Liquid Flowing Under Fully Developed Flow Conditions
90(6)
2.3.5 Forces Due to Friction
96(4)
2.4 Force Balance on a Fluid Element Flowing in a Pipe---Derivation of Bernoulli Equation
100(7)
2.5 Energy Equation for Steady Flow of Fluids
107(13)
2.5.1 Pressure Energy
111(1)
2.5.2 Kinetic Energy
111(2)
2.5.3 Potential Energy
113(1)
2.5.4 Frictional Energy Loss
113(3)
2.5.5 Power Requirements of a Pump
116(4)
2.6 Pump Selection and Performance Evaluation
120(17)
2.6.1 Centrifugal Pumps
120(2)
2.6.2 Head
122(1)
2.6.3 Pump Performance Characteristics
122(4)
2.6.4 Pump Characteristic Diagram
126(1)
2.6.5 Net Positive Suction Head
127(4)
2.6.6 Selecting a Pump for a Liquid Transport System
131(5)
2.6.7 Affinity Laws
136(1)
2.7 Flow Measurement
137(12)
2.7.1 The Pitot Tube
141(2)
2.7.2 The Orifice Meter
143(4)
2.7.3 The Venturi Meter
147(1)
2.7.4 Variable-Area Meters
147(1)
2.7.5 Other Measurement Methods
148(1)
2.8 Measurement of Viscosity
149(7)
2.8.1 Capillary Tube Viscometer
149(2)
2.8.2 Rotational Viscometer
151(3)
2.8.3 Influence of Temperature on Viscosity
154(2)
2.9 Flow Characteristics of Non-Newtonian Fluids
156(14)
2.9.1 Properties of Non-Newtonian Fluids
156(7)
2.9.2 Velocity Profile of a Power Law Fluid
163(1)
2.9.3 Volumetric Flow Rate of a Power Law Fluid
163(1)
2.9.4 Average Velocity in a Power Law Fluid
164(1)
2.9.5 Friction Factor and Generalized Reynolds Number for Power Law Fluids
164(3)
2.9.6 Computation of Pumping Requirement of Non-Newtonian Liquids
167(3)
2.10 Transport of Solid Foods
170(9)
2.10.1 Properties of Granular Materials and Powders
171(5)
2.10.2 Flow of Granular Foods
176(3)
2.11 Process Controls in Food Processing
179(12)
2.11.1 Processing Variables and Performance Indicators
181(2)
2.11.2 Input and Output Signals to Control Processes
183(1)
2.11.3 Design of a Control System
183(8)
2.12 Sensors
191(5)
2.12.1 Temperature
191(2)
2.12.2 Liquid Level in a Tank
193(1)
2.12.3 Pressure Sensors
194(1)
2.12.4 Flow Sensors
195(1)
2.12.5 Glossary of Terms Important in Data Acquisition
196(1)
2.13 Dynamic Response Characteristics of Sensors
196(15)
Problems
200(5)
List of Symbols
205(2)
Bibliography
207(4)
Chapter 3 Resource Sustainability
211(54)
3.1 Generation of Steam
211(17)
3.1.1 Steam Generation Systems
212(3)
3.1.2 Thermodynamics of Phase Change
215(3)
3.1.3 Steam Tables
218(6)
3.1.4 Steam Utilization
224(4)
3.2 Fuel Utilization
228(6)
3.2.1 Systems
230(1)
3.2.2 Mass and Energy Balance Analysis
231(2)
3.2.3 Burner Efficiencies
233(1)
3.3 Electric Power Utilization
234(10)
3.3.1 Electrical Terms and Units
236(1)
3.3.2 Ohm's Law
237(1)
3.3.3 Electric Circuits
238(2)
3.3.4 Electric Motors
240(1)
3.3.5 Electrical Controls
241(1)
3.3.6 Electric Lighting
242(2)
3.4 Energy, Water and Environment
244(21)
3.4.1 Life Cycle Assessment
245(4)
3.4.2 Food System Applications
249(8)
3.4.3 Sustainability Indicators
257(1)
Problems
257(4)
List of Symbols
261(1)
Bibliography
262(3)
Chapter 4 Heat Transfer in Food Processing
265(156)
4.1 Systems for Heating and Cooling Food Products
266(9)
4.1.1 Plate Heat Exchanger
266(4)
4.1.2 Tubular Heat Exchanger
270(1)
4.1.3 Scraped-Surface Heat Exchanger
271(2)
4.1.4 Steam-Infusion Heat Exchanger
273(1)
4.1.5 Epilogue
274(1)
4.2 Thermal Properties of Foods
275(7)
4.2.1 Specific Heat
275(3)
4.2.2 Thermal Conductivity
278(2)
4.2.3 Thermal Diffusivity
280(2)
4.3 Modes of Heat Transfer
282(6)
4.3.1 Conductive Heat Transfer
282(3)
4.3.2 Convective Heat Transfer
285(2)
4.3.3 Radiation Heat Transfer
287(1)
4.4 Steady-State Heat Transfer
288(67)
4.4.1 Conductive Heat Transfer in a Rectangular Slab
289(3)
4.4.2 Conductive Heat Transfer through a Tubular Pipe
292(3)
4.4.3 Heat Conduction in Multilayered Systems
295(8)
4.4.4 Estimation of Convective Heat-Transfer Coefficient
303(17)
4.4.5 Estimation of Overall Heat-Transfer Coefficient
320(4)
4.4.6 Fouling of Heat Transfer Surfaces
324(6)
4.4.7 Design of a Tubular Heat Exchanger
330(8)
4.4.8 The Effectiveness-NTIT Method for Designing Heat Exchangers
338(5)
4.4.9 Design of a Plate Heat Exchanger
343(7)
4.4.10 Importance of Surface Characteristics in Radiative Heat Transfer
350(2)
4.4.11 Radiative Heat Transfer between Two Objects
352(3)
4.5 Unsteady-State Heat Transfer
355(29)
4.5.1 Importance of External versus Internal Resistance to Heat Transfer
357(1)
4.5.2 Negligible Internal Resistance to Heat Transfer (NBi < 0.1)--- A Lumped System Analysis
358(5)
4.5.3 Finite Internal and Surface Resistance to Heat Transfer (0.1< NB<40)
363(3)
4.5.4 Negligible Surface Resistance to Heat Transfer (NBi>40)
366(1)
4.5.5 Finite Objects
366(2)
4.5.6 Procedures to Use Temperature---Time Charts
368(8)
4.5.7 Use of fh and j Factors in Predicting Temperature in Transient Heat Transfer
376(8)
4.6 Electrical Conductivity of Foods
384(3)
4.7 Ohmic Heating
387(2)
4.8 Microwave Heating
389(32)
4.8.1 Mechanisms of Microwave Heating
390(1)
4.8.2 Dielectric Properties
391(1)
4.8.3 Conversion of Microwave Energy into Heat
392(1)
4.8.4 Penetration Depth of Microwaves
393(2)
4.8.5 Microwave Oven
395(1)
4.8.6 Microwave Heating of Foods
396(2)
Problems
398(16)
List of Symbols
414(3)
Bibliography
417(4)
Chapter 5 Preservation Processes
421(54)
5.1 Processing Systems
421(10)
5.1.1 Pasteurization and Blanching Systems
422(2)
5.1.2 Commercial Sterilization Systems
424(4)
5.1.3 Ultra-High Pressure Systems
428(2)
5.1.4 Pulsed Electric Field Systems
430(1)
5.1.5 Alternative Preservation Systems
431(1)
5.2 Microbial Survivor Curves
431(5)
5.3 Influence of External Agents
436(4)
5.4 Thermal Death Time F
440(1)
5.5 Spoilage Probability
441(1)
5.6 General Method for Process Calculation
442(18)
5.6.1 Applications to Pasteurization
444(3)
5.6.2 Commercial Sterilization
447(3)
5.6.3 Aseptic Processing and Packaging
450(8)
5.6.4 Combined Processes
458(2)
5.7 Mathematical Methods
460(15)
5.7.1 Pouch Processing
464(3)
Problems
467(4)
List of Symbols
471(1)
Bibliography
472(3)
Chapter 6 Refrigeration
475(46)
6.1 Selection of a Refrigerant
476(4)
6.2 Components of a Refrigeration System
480(10)
6.2.1 Evaporator
481(2)
6.2.2 Compressor
483(3)
6.2.3 Condenser
486(2)
6.2.4 Expansion Valve
488(2)
6.3 Pressure-Enthalpy Charts
490(10)
6.3.1 Pressure-Enthalpy Tables
495(1)
6.3.2 Use of Computer-Aided Procedures to Determine Thermodynamic Properties of Refrigerants
496(4)
6.4 Mathematical Expressions Useful in Analysis of Vapor-Compression Refrigeration
500(12)
6.4.1 Cooling Load
500(1)
6.4.2 Compressor
501(1)
6.4.3 Condenser
501(1)
6.4.4 Evaporator
501(1)
6.4.5 Coefficient of Performance
502(1)
6.4.6 Refrigerant Flow Rate
502(10)
6.5 Use of Multistage Systems
512(9)
6.5.1 Flash Gas Removal System
512(5)
Problems
517(2)
List of Symbols
519(1)
Bibliography
520(1)
Chapter 7 Food Freezing
521(44)
7.1 Freezing Systems
522(8)
7.1.1 Indirect Contact Systems
522(5)
7.1.2 Direct-Contact Systems
527(3)
7.2 Frozen-Food Properties
530(4)
7.2.1 Density
530(1)
7.2.2 Thermal Conductivity
531(1)
7.2.3 Enthalpy
531(2)
7.2.4 Apparent Specific Heat
533(1)
7.2.5 Apparent Thermal Diffusivity
533(1)
7.3 Freezing Time
534(18)
7.3.1 Plank's Equation
536(4)
7.3.2 Other Freezing-Time Prediction Methods
540(1)
7.3.3 Pham's Method to Predict Freezing Time
540(4)
7.3.4 Prediction of Freezing Time of Finite-Shaped Objects
544(4)
7.3.5 Experimental Measurement of Freezing Time
548(1)
7.3.6 Factors Influencing Freezing Time
548(1)
7.3.7 Freezing Rate
549(1)
7.3.8 Thawing Time
549(3)
7.4 Frozen-Food Storage
552(13)
7.4.1 Quality Changes in Foods during Frozen Storage
552(4)
Problems
556(4)
List of Symbols
560(1)
Bibliography
561(4)
Chapter 8 Evaporation
565(28)
8.1 Boiling-Point Elevation
567(2)
8.2 Types of Evaporators
569(7)
8.2.1 Batch-Type Pan Evaporator
569(1)
8.2.2 Natural Circulation Evaporators
570(1)
8.2.3 Rising-Film Evaporator
570(1)
8.2.4 Falling-Film Evaporator
571(1)
8.2.5 Rising/Falling-Film Evaporator
571(2)
8.2.6 Forced-Circulation Evaporator
573(1)
8.2.7 Agitated Thin-Film Evaporator
573(3)
8.3 Design of a Single-Effect Evaporator
576(5)
8.4 Design of a Multiple-Effect Evaporator
581(6)
8.5 Vapor Recompression Systems
587(6)
8.5.1 Thermal Recompression
587(1)
8.5.2 Mechanical Vapor Recompression
588(1)
Problems
588(3)
List of Symbols
591(1)
Bibliography
591(2)
Chapter 9 Psychrometrics
593(24)
9.1 Properties of Dry Air
593(2)
9.1.1 Composition of Air
593(1)
9.1.2 Specific Volume of Dry Air
594(1)
9.1.3 Specific Heat of Dry Air
594(1)
9.1.4 Enthalpy of Dry Air
594(1)
9.1.5 Dry Bulb Temperature
595(1)
9.2 Properties of Water Vapor
595(1)
9.2.1 Specific Volume of Water Vapor
595(1)
9.2.2 Specific Heat of Water Vapor
595(1)
9.2.3 Enthalpy of Water Vapor
596(1)
9.3 Properties of Air---Vapor Mixtures
596(8)
9.3.1 Gibbs-Dalton Law
596(1)
9.3.2 Dew-Point Temperature
596(1)
9.3.3 Humidity Ratio (or Moisture Content)
597(1)
9.3.4 Relative Humidity
598(1)
9.3.5 Humid Heat of an Air-Water Vapor Mixture
598(1)
9.3.6 Specific Volume
599(1)
9.3.7 Adiabatic Saturation of Air
599(2)
9.3.8 Wet Bulb Temperature
601(3)
9.4 The Psychrometric Chart
604(13)
9.4.1 Construction of the Chart
604(2)
9.4.2 Use of Psychrometric Chart to Evaluate Complex Air-Conditioning Processes
606(5)
Problems
611(3)
List of Symbols
614(1)
Bibliography
615(2)
Chapter 10 Mass Transfer
617(28)
10.1 The Diffusion Process
618(14)
10.1.1 Steady-State Diffusion of Gases (and Liquids) through Solids
621(1)
10.1.2 Convective Mass Transfer
622(4)
10.1.3 Laminar Flow Over a Flat Plate
626(4)
10.1.4 Turbulent Flow Past a Flat Plate
630(1)
10.1.5 Laminar Flow in a Pipe
630(1)
10.1.6 Turbulent Flow in a Pipe
631(1)
10.1.7 Mass Transfer for Flow Over Spherical Objects
631(1)
10.2 Unsteady-State Mass Transfer
632(13)
10.2.1 Transient-State Diffusion
633(5)
10.2.2 Diffusion of Gases
638(3)
Problems
641(2)
List of Symbols
643(1)
Bibliography
644(1)
Chapter 11 Membrane Separation
645(30)
11.1 Electrodialysis Systems
647(4)
11.2 Reverse Osmosis Membrane Systems
651(7)
11.3 Membrane Performance
658(1)
11.4 Ultrafiltration Membrane Systems
659(2)
11.5 Concentration Polarization
661(6)
11.6 Types of Reverse-Osmosis and Ultrafiltration Systems
667(8)
11.6.1 Plate-and-Frame
668(1)
11.6.2 Tubular
668(1)
11.6.3 Spiral-Wound
668(3)
11.6.4 Hollow-Fiber
671(1)
Problems
671(1)
List of Symbols
672(2)
Bibliography
674(1)
Chapter 12 Dehydration
675(36)
12.1 Basic Drying Processes
675(7)
12.1.1 Water Activity
676(3)
12.1.2 Moisture Diffusion
679(1)
12.1.3 Drying-Rate Curves
680(1)
12.1.4 Heat and Mass Transfer
680(2)
12.2 Dehydration Systems
682(5)
12.2.1 Tray or Cabinet Dryers
682(1)
12.2.2 Tunnel Dryers
683(1)
12.2.3 Puff-Drying
684(1)
12.2.4 Fluidized-Bed Drying
685(1)
12.2.5 Spray Drying
685(1)
12.2.6 Freeze-Drying
686(1)
12.3 Dehydration System Design
687(24)
12.3.1 Mass and Energy Balance
687(5)
12.3.2 Drying-Time Prediction
692(10)
Problems
702(5)
List of Symbols
707(1)
Bibliography
708(3)
Chapter 13 Supplemental Processes
711(32)
13.1 Filtration
711(10)
13.1.1 Operating Equations
711(6)
13.1.2 Mechanisms of Filtration
717(1)
13.1.3 Design of a Filtration System
718(3)
13.2 Sedimentation
721(6)
13.2.1 Sedimentation Velocities for Low-Concentration Suspensions
721(3)
13.2.2 Sedimentation in High-Concentration Suspensions
724(3)
13.3 Centrifugation
727(4)
13.3.1 Basic Equations
727(1)
13.3.2 Rate of Separation
727(2)
13.3.3 Liquid-Liquid Separation
729(2)
13.3.4 Particle-Gas Separation
731(1)
13.4 Mixing
731(12)
13.4.1 Agitation Equipment
733(3)
13.4.2 Power Requirements of Impellers
736(4)
Problems
740(1)
List of Symbols
741(1)
Bibliography
742(1)
Chapter 14 Extrusion Processes for Foods
743(24)
14.1 Introduction and Background
743(1)
14.2 Basic Principles of Extrusion
744(7)
14.3 Extrusion Systems
751(6)
14.3.1 Cold Extrusion
752(1)
14.3.2 Extrusion Cooking
753(1)
14.3.3 Single Screw Extruders
754(2)
14.3.4 Twin-Screw Extruders
756(1)
14.4 Extrusion System Design
757(5)
14.5 Design of More Complex Systems
762(5)
Problems
763(1)
List of Symbols
764(1)
Bibliography
765(2)
Chapter 15 Packaging Concepts
767(26)
15.1 Introduction
767(1)
15.2 Food Protection
768(1)
15.3 Product Containment
769(1)
15.4 Product Communication
770(1)
15.5 Product Convenience
770(1)
15.6 Mass Transfer in Packaging Materials
770(6)
15.6.1 Permeability of Packaging Material to "Fixed" Gases
773(3)
15.7 Innovations in Food Packaging
776(4)
15.7.1 Passive Packaging
777(1)
15.7.2 Active Packaging
777(1)
15.7.3 Intelligent Packaging
778(2)
15.8 Food Packaging and Product Shelf-Life
780(8)
15.8.1 Scientific Basis for Evaluating Shelf Life
780(8)
15.9 Summary
788(5)
Problems
788(1)
List of Symbols
789(1)
Bibliography
790(3)
Appendices
793(55)
A.1 SI System of Units and Conversion Factors
793(6)
A.1.1 Rules for Using SI Units
793(1)
Table A.1.1 SI Prefixes
793(3)
Table A.1.2 Useful Conversion Factors
796(2)
Table A.1.3 Conversion Factors for Pressure
798(1)
A.2 Physical Properties of Foods
799(10)
Table A.2.1 Specific Heat of Foods
799(1)
Table A.2.2 Thermal Conductivity of Selected Food Products
800(2)
Table A.2.3 Thermal Diffusivity of Some Foodstuffs
802(1)
Table A.2.4 Viscosity of Liquid Foods
803(1)
Table A.2.5 Properties of Ice as a Function of Temperature
804(1)
Table A.2.6 Approximate Heat Evolution Rates of Fresh Fruits and Vegetables When Stored at Temperatures Shown
804(2)
Table A.2.7 Enthalpy of Frozen Foods
806(1)
Table A.2.8 Composition Values of Selected Foods
807(1)
Table A.2.9 Coefficients to Estimate Food Properties
808(1)
A.3 Physical Properties of Nonfood Materials
809(5)
Table A.3.1 Physical Properties of Metals
809(1)
Table A.3.2 Physical Properties of Nonmetals
810(2)
Table A.3.3 Emissivity of Various Surfaces
812(2)
A.4 Physical Properties of Water and Air
814(5)
Table A.4.1 Physical Properties of Water at the Saturation Pressure
814(1)
Table A.4.2 Properties of Saturated Steam
815(2)
Table A.4.3 Properties of Superheated Steam
817(1)
Table A.4.4 Physical Properties of Dry Air at Atmospheric Pressure
818(1)
A.5 Psychrometric Charts
819(2)
Figure A.5.1 Psychrometric chart for high temperatures
819(1)
Figure A.5.2 Psychrometric chart for low temperatures
820(1)
A.6 Pressure-Enthalpy Data
821(14)
Figure A.6.1 Pressure---enthalpy diagram for Refrigerant 12
821(1)
Table A.6.1 Properties of Saturated Liquid and Vapor R-12
822(3)
Figure A.6.2 Pressure---enthalpy diagram of superheated R-12 vapor
825(1)
Table A.6.2 Properties of Saturated Liquid and Vapor R-717 (Ammonia)
826(3)
Figure A.6.3 Pressure---enthalpy diagram of superheated R-717 (ammonia) vapor
829(1)
Table A.6.3 Properties of Saturated Liquid and Vapor R-134a
830(3)
Figure A.6.4 Pressure-enthalpy diagram of R-134a
833(1)
Figure A.6.5 Pressure---enthalpy diagram of R-134a (expanded scale)
834(1)
A.7 Symbols for use in Drawing Food Engineering Process Equipment
835(5)
A.8 Miscellaneous
840(4)
Table A.8.1 Numerical Data and Area/Volume of Objects
840(1)
Figure A.8.1 Temperature at the geometric center of a sphere (expanded scale)
841(1)
Figure A.8.2 Temperature at the axis of an infinitely long cylinder (expanded scale)
842(1)
Figure A.8.3 Temperature at the midplane of an infinite slab (expanded scale)
843(1)
A.9 Dimensional Analysis
844(4)
A.9.1 Buckingham π Theorem
844(1)
Table A.9.1 Dimensions of Selected Experimental Variables
845(3)
Bibliography 848(3)
Index 851(12)
Food Science and Technology International Series 863
R. Paul Singh is a Distinguished Professor Emeritus of Food Engineering at the University of California, Davis. The American Society of Agricultural Engineers (ASAE) awarded him the Young Educator Award in 1986, the Kishida International Award in 2007, and the Massey Ferguson Education Gold Medal Award in 2013. In 2007, Singh was recognized with a Food Engineering Lifetime Achievement Award by the International Association of Engineering and Food.In 2008, Singh was elected to the US National Academy of Engineering for innovation and leadership in food engineering research and education.” Dennis R. Heldman is the Dale A. Seiberling Endowed Professor of Food Engineering at Ohio State University. He is also an Adjunct Professor at the University of California-Davis and Professor Emeritus at the University of Missouri. He has been author or co-author of over 150 research projects and several books. He served as President of the Institute of Food Technologists in 2006-07, and was recognized with the Food Engineering Lifetime Achievement Award from the International Association for Engineering and Food in 2011.