Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Food Engineering

4.07/5 (46 ratings by Goodreads)
(Department of Food Science and Technology and Department of Biological and Agricultural Engineering, University of California, Davis, USA), (Professor of Food Engineering at The Ohio State University. He is also and Adjunct Professor a)
  • Formatas: PDF+DRM
  • Serija: Food Science and Technology
  • Išleidimo metai: 29-Jun-2001
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080574493
  • Formatas: PDF+DRM
  • Serija: Food Science and Technology
  • Išleidimo metai: 29-Jun-2001
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080574493

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A textbook for a beginning food engineering course in a food science curriculum, presenting topics relevant to handling, processing, packaging, and redistributing all types of foods. The scope ranges from basic engineering principles based on fundamental physics to applications in food processing. The first edition appeared in 1984; no date is noted for the second. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Food engineering is a required class in food science programs, as outlined by the Institute for Food Technologists (IFT). The concepts and applications are also required for professionals in food processing and manufacturing to attain the highest standards of food safety and quality.

The third edition of this successful textbook succinctly presents the engineering concepts and unit operations used in food processing, in a unique blend of principles with applications. The authors use their many years of teaching to present food engineering concepts in a logical progression that covers the standard course curriculum. Each chapter describes the application of a particular principle followed by the quantitative relationships that define the related processes, solved examples, and problems to test understanding.

The subjects the authors have selected to illustrate engineering principles demonstrate the relationship of engineering to the chemistry, microbiology, nutrition and processing of foods. Topics incorporate both traditional and contemporary food processing operations.

Recenzijos

"Since publication of the first edition, the Singh and Heldman text has been the academic and industry standard.' said Ken Swartzel in his foreword. The third edition continues the tradition. ...the text pioneers integration through the internet with animated figures." --IFT NEWS

Daugiau informacijos

The subjects the authors have selected to illustrate engineering principles demonstrate the relationship of engineering to the chemistry, microbiology, nutrition and processing of foods. Topics incorporate both traditional and contemporary food processing operations.
About the authors v
Foreword vii
Preface ix
Introduction
Dimensions
1(1)
Engineering Units
2(7)
Base Units
2(1)
Derived Units
3(2)
Supplementary Units
5(4)
System
9(1)
State of a System
10(2)
Extensive Properties
11(1)
Intensive Properties
12(1)
Density
12(2)
Concentration
14(1)
Moisture Content
15(3)
Temperature
18(2)
Pressure
20(1)
Enthalpy
21(3)
Equation of State and Perfect Gas Law
24(1)
Phase Diagram of Water
24(2)
Conservation of Mass
26(3)
Conservation of Mass for an Open System
28(1)
Conservation of Mass for a Closed System
29(1)
Material Balances
29(8)
Thermodynamics
37(1)
Laws of Thermodynamics
38(2)
Energy
40(1)
Energy Balance
41(1)
Energy Balance for a Closed System
42(9)
Heat
42(1)
Work
43(8)
Energy Balance for an Open System
51(1)
Energy Balance for Steady Flow Systems
52(1)
A Total Energy Balance
52(3)
Power
55(1)
Area
55(1)
Dynamic Response Characteristics of Sensors
56(8)
Problems
60(1)
List of Symbols
61(1)
Bibliography
62(2)
Fluid Flow in Food Processing
Liquid Transport Systems
64(5)
Pipes for Processing Plants
65(1)
Types of Pumps
66(3)
Properties of Liquids
69(9)
Terminology Used in Material Response to Stress
69(1)
Density
70(1)
Viscosity
71(7)
Handling Systems for Newtonian Liquids
78(18)
The Continuity Equation
79(2)
Reynolds Number
81(4)
Entrance Region and Fully Developed Flow
85(2)
Velocity Profile in a Liquid Flowing under Fully Developed Flow Conditions
87(5)
Forces due to Friction
92(4)
Force Balance on a Fluid Element Flowing in a Pipe-Derivation of Bernoulli Equation
96(7)
Energy Equation for Steady Flow of Fluids
103(12)
Pressure Energy
106(1)
Kinetic Energy
106(2)
Potential Energy
108(1)
Frictional Energy Loss
108(2)
Power Requirements of a Pump
110(5)
Pump Selection and Performance Evaluation
115(16)
Centrifugal Pumps
115(1)
Head
116(2)
Pump Performance Characteristics
118(3)
Pump Characteristic Diagram
121(1)
Net Positive Suction Head
122(3)
Selecting a Pump for a Liquid Transport System
125(5)
Affinity Laws
130(1)
Flow Measurement
131(13)
The Pilot Tube
135(3)
The Orifice Meter
138(3)
The Venturi Meter
141(1)
Variable Area Meters
142(1)
Other Measurement Methods
143(1)
Measurement of Viscosity
144(7)
Capillary Tube Viscometer
144(2)
Rotational Viscometer
146(2)
Influence of Temperature on Viscosity
148(3)
Flow Characteristics of New-Newtonian Fluids
151(20)
Properties of Non-Newtonian Fluids
151(6)
Velocity Profile of a Power Law Fluid
157(1)
Volumetric Flow Rate of a Power Law Fluid
157(1)
Average Velocity in a Power Law Fluid
158(3)
Friction Factor and Generalized Reynolds Number for Power Law Fluids
161(3)
Computation of Pumping Requirement of Non-Newtonian Liquids
164(1)
Problems
164(2)
List of Symbols
166(2)
Bibliography
168(3)
Energy for Food Processing
Generation of Steam
171(17)
Steam Generation Systems
172(2)
Thermodynamics of Phase Change
174(4)
Steam Tables
178(6)
Steam Utilization
184(4)
Fuel Utilization
188(5)
Systems
189(1)
Mass and Energy Balance Analysis
190(1)
Burner Efficiencies
191(2)
Electric Power Utilization
193(15)
Electrical Terms and Units
195(1)
Ohm's Law
196(1)
Electric Circuits
197(2)
Electric Motors
199(1)
Electrical Controls
200(1)
Electric Lighting
201(1)
Problems
202(2)
List of Symbols
204(1)
Bibliography
205(3)
Heat Transfer in Food Processing
Systems for Heating and Cooling Food Products
208(8)
Plate Heat Exchanger
208(4)
Tubular Heat Exhanger
212(1)
Scraped-Surface Heat Exchanger
213(2)
Steam-Infusion Heat Exchanger
215(1)
Epilogue
215(1)
Thermal Properties of Food
216(6)
Specific Heat
216(3)
Thermal Conductivity
219(2)
Thermal Diffusivity
221(1)
Modes of Heat Transfer
222(7)
Conductive Heat Transfer
223(2)
Convective Heat Transfer
225(2)
Radiation Heat Transfer
227(2)
Steady-State Heat Transfer
229(51)
Conductive Heat Transfer in a Rectangular Slab
230(3)
Conductive Heat Transfer through a Tubular Pipe
233(2)
Heat Conduction in Multilayered Systems
235(8)
Estimation of Convective Heat-Transfer Coefficient
243(15)
Estimation of Overall Heat-Transfer Coefficient
258(4)
Role of Insulation in Reducing Heat Loss from Process Equipment
262(5)
Design of a Tubular Heat Exchanger
267(8)
Importance of Surface Characteristics in Radiative Heat Transfer
275(1)
Radiative Heat Transfer between Two Objects
276(4)
Unsteady-State Heat Transfer
280(26)
Importance of External vs Internal Resistance to Heat Transfer
282(1)
Negligible Internal Resistance to Heat Transfer (NBi < 0.1) - A Lumped System Analysis
283(4)
Finite Internal and Surface Resistance to Heat Transfer (0.1 < NBi < 40)
287(4)
Negligible Surface Resistance to Heat Transfer (NBi > 40)
291(1)
Finite Objects
291(1)
Procedures to Use Temperature-Time Charts
292(8)
Use of fh and j Factors in Predicting Temperature in Transient Heat Transfer
300(6)
Microwave Heating
306(27)
Mechanisms of Microwave Heating
307(1)
Dielectric Properties
308(1)
Conversion of Microwave Energy into Heat
309(1)
Penetration Depth of Microwaves
310(1)
Microwave Oven
311(1)
Microwave Heating of Foods
312(2)
Problems
314(13)
List of Symbols
327(2)
Bibliography
329(4)
Preservation Processes
Microbial Survivor Curves
333(3)
Influence of External Agents
336(3)
Thermal Death Time F
339(1)
Spoilage Probability
340(1)
General Method for Process Calculation
341(16)
Applications to Pasteurization
343(2)
Commercial Sterilization
345(3)
Aseptic Processing and Packaging
348(9)
Mathematical Methods
357(11)
Problems
361(2)
List of Symbols
363(1)
Bibliography
364(4)
Refrigeration
Selection of a Refrigerant
368(3)
Components of a Refrigeration System
371(10)
Evaporator
372(2)
Compressor
374(3)
Condenser
377(1)
Expansion Valve
378(3)
Pressure-Enthalpy Charts
381(6)
Pressure-Enthalpy Tables
385(1)
Use of Computer-Aided Procedures to Determine Thermodynamic Properties of Refrigerants
386(1)
Mathematical Expression Useful in Analysis of Vapor-Compression Refrigeration
387(13)
Cooling Load
387(2)
Compressor
389(1)
Condenser
390(1)
Evaporator
390(1)
Coefficient of Performance
390(101)
Refrigerant Flow Rate
491
Use of multistage Systems
400(10)
Flash Gas Removal System
400(4)
Problems
404(3)
List of Symbols
407(1)
Bibliography
408(2)
Food Freezing
Freezing Systems
410(8)
Indirect Contact Systems
410(4)
Direct-Contact Systems
414(4)
Frozen-Food Properties
418(3)
Density
418(1)
Thermal Conductivity
418(1)
Enthalpy
419(1)
Apparent Specific Heat
419(1)
Apparent Thermal Diffusivity
420(1)
Freezing Time
421(15)
Plank's Equation
423(3)
Other Freezing-Time Prediction Methods
426(1)
Pham's Methods to Predict Freezing Time
427(3)
Prediction of Freezing Time of Finite-Shaped Objects
430(4)
Experimental Measurement of Freezing Time
434(1)
Factors Influencing Freezing Time
435(1)
Freezing Rate
435(1)
Thawing Time
435(1)
Frozen-Food Storage
436(13)
Quality Changes in Foods during Frozen Storage
437(3)
Problems
440(3)
List of Symbols
443(1)
Bibliography
444(5)
Evaporation
Boiling-Point Elevation
449(2)
Types of Evaporators
451(6)
Batch-Type Pan Evaporator
451(1)
Natural Circulation Evaporators
452(1)
Rising-Film Evaporator
452(1)
Falling-Film Evaporator
453(1)
Rising/Falling-Film Evaporator
454(1)
Forced-Circulation Evaporator
454(1)
Agitated Thin-Film Evaporator
455(2)
Design of a Single-Effect Evaporator
457(5)
Design of a Multiple-Effect Evaporator
462(6)
Vapor Recompression Systems
468(5)
Thermal Recompression
468(1)
Mechanical Vapor Recompression
468(2)
Problems
470(1)
List of Symbols
471(1)
Bibliography
472(1)
Psychrometries
Properties of Dry Air
473(2)
Composition of Air
473(1)
Specific Volume of Dry Air
474(1)
Specific Heat of Dry Air
474(1)
Enthalpy of Dry Air
474(1)
Dry Bulb Temperature
475(1)
Properties of Water Vapor
475(1)
Specific Volume of Water Vapor
475(1)
Specific Heat of Water Vapor
475(1)
Enthalpy of Water Vapor
476(1)
Properties of Air-Vapor Mixtures
476(8)
Gibbs-Dalton Law
476(1)
Dew-Point Temperature
476(1)
Humidity Ratio (or Moisture Content)
477(1)
Relative Humidity
478(1)
Humid Heat of an Air-Water Vapor Mixture
478(1)
Specific Volume
479(1)
Adiabatic Saturation of Air
479(2)
Wet Bulb Temperature
481(3)
The Psychrometric Chart
484(14)
Construction of the Chart
484(2)
Use of Psychrometric Chart to Evaluate Complex Air-Conditioning Processes
486(5)
Problems
491(3)
List of Symbols
494(1)
Bibliography
495(3)
Mass Transfer
The Diffusion Process
498(13)
Steady-State Diffusion of Gases (and Liquids) through Solids
500(2)
Convective Mass Transfer
502(3)
Laminar Flow Past a Flat Plate
505(4)
Turbulent Flow Past a Flat Plate
509(1)
Laminar Flow in a Pipe
509(1)
Turbulent Flow in a Pipe
510(1)
Mass Transfer for Flow over Spherical Objects
510(1)
Unsteady-State Mass Transfer
511(9)
Transient-State Diffusion
513(4)
Diffusion of Gases
517(3)
Mass Transfer in Packaging Materials
520(11)
Permeability of Packaging Materials to ``Fixed'' Gases
522(3)
Problems
525(2)
List of Symbols
527(1)
Bibliography
528(3)
Membrane Separation
Electrodialysis Systems
531(3)
Reverse Osmosis Membrane Systems
534(7)
Membrane Performance
541(1)
Ultrafiltration Membrane Systems
542(1)
Concentration Polarization
543(6)
Types of Reverse-Osmosis and Ultrafiltration Systems
549(8)
Problems
553(1)
List of Symbols
554(1)
Bibliography
555(2)
Dehydration
Basic Drying Processes
557(6)
Water Activity
558(3)
Moisture Diffusion
561(1)
Drying-Rate Curves
561(1)
Heat and Mass Transfer
562(1)
Dehydration Systems
563(5)
Tray or Cabinet Dryers
564(1)
Tunnel Dryers
565(1)
Puff-Drying
566(1)
Fluidized-Bed Drying
566(1)
Spray Drying
566(1)
Freeze-Drying
567(1)
Dehydration System Design
568(23)
Mass and Energy Balance
568(5)
Drying-Time Prediction
573(11)
Problems
584(4)
List of Symbols
588(1)
Bibliography
589(2)
Appendices
A.1 SI System of Units and Conversion Factors
591(6)
A.1.1 Rules for Using SI Units
591(1)
Table A.1.1: SI Prefixes
591(3)
Table A.1.2: Useful Conversion Factors
594(2)
Table A.1.3: Conversion Factors for Pressure
596(1)
A.2 Physical Properties of Foods
597(9)
Table A.2.1: Specific Heats of Foods
597(1)
Table A.2.2: Thermal Conductivity of Selected Food Products
598(2)
Table A.2.3: Thermal Diffusivity of Some Foodstuffs
600(1)
Table A.2.4: Viscosity of Liquid Foods
601(1)
Table A.2.5: Properties of Ice as a Function of Temperature
601(1)
Table A.2.6: Approximate Heat Evolution Rates of Fresh Fruits and Vegetables When Stored at Temperatures Shown
602(1)
Table A.2.7: Enthalpy of Frozen Foods
603(1)
Table A.2.8: Composition Values of Selected Foods
604(1)
Table A.2.9: Coefficient to Estimate Food Properties
605(1)
A.3 Physical Properties of Nonfood Materials
606(5)
Table A.3.1: Physical Properties of Metals
606(2)
Table A.3.2: Physical Properties of Nonmetals
608(1)
Table A.3.3: Emissivity of Various Surfaces
609(2)
A.4 Physical Properties of Water and Air
611(4)
Table A.4.1: Physical Properties of Water at the Saturation Pressure
611(1)
Table A.4.2: Properties of Saturated Steam
612(1)
Table A.4.3: Properties of Superheated Steam (Steam Table)
613(1)
Table A.4.4: Properties of Dry Air at Atmospheric Pressure
614(1)
A.5 Psychrometric Charts
615(2)
Figure A.5.1: Psychrometric chart for high temperatures
615(1)
Figure A.5.2: Psychrometric chart for low temperatures
616(1)
A.6 Pressure-Enthalpy Data
617(11)
Figure A.6.1: Pressure-enthalpy diagram for Refrigarant 12
617(1)
Table A.6.1: Properties of Saturated Liquid and Vapor R-12
618(2)
Figure A.6.2: Pressure-enthalpy diagram of superheated R-12 vapor
620(1)
Table A.6.2: Properties of Saturated Liquid and Vapor R-717 (Ammonia)
621(2)
Figure A.6.3: Pressure-enthalpy diagram of superheated R-717 (ammonia) vapor
623(1)
Table A.6.3: Properties of Saturated Liquid and Vapor R-134a
624(2)
Figure A.6.4: Pressure-enthalpy diagram of R-134a
626(1)
Figure A.6.5: Pressure-enthalpy diagram of R-134a (expanded scale)
627(1)
A.7 Symbols for Use in Drawing Food Engineering Process Equipment
628(5)
A.8 Miscellaneous
633(4)
Table A.8.1: Numerical Data, and Area/Volume of Objects
633(1)
Figure A.8.1: Temperature at geometric center of a sphere (expanded scale)
634(1)
Figure A.8.2: Temperature at the axis of an infinitely long cylinder (expanded scale)
635(1)
Figure A.8.3: Temperature at the midplane of an infinite slab (expanded scale)
636(1)
Bibliography 637(2)
Index 639
Dennis R. Heldman is the Dale A. Seiberling Endowed Professor of Food Engineering at Ohio State University. He is also an Adjunct Professor at the University of California-Davis and Professor Emeritus at the University of Missouri. He has been author or co-author of over 150 research projects and several books. He served as President of the Institute of Food Technologists in 2006-07, and was recognized with the Food Engineering Lifetime Achievement Award from the International Association for Engineering and Food in 2011.