Atnaujinkite slapukų nuostatas

Introduction to Frustrated Magnetism: Materials, Experiments, Theory [Kietas viršelis]

Edited by , Edited by , Edited by
  • Formatas: Hardback, 682 pages, aukštis x plotis: 235x155 mm, weight: 1344 g, XXVI, 682 p., 1 Hardback
  • Serija: Springer Series in Solid-State Sciences 164
  • Išleidimo metai: 13-Jan-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642105882
  • ISBN-13: 9783642105883
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 682 pages, aukštis x plotis: 235x155 mm, weight: 1344 g, XXVI, 682 p., 1 Hardback
  • Serija: Springer Series in Solid-State Sciences 164
  • Išleidimo metai: 13-Jan-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642105882
  • ISBN-13: 9783642105883
Kitos knygos pagal šią temą:
text yet to follow

The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
Part I Basic Concepts in Frustrated Magnetism
1 Geometrically Frustrated Antiferromagnets: Statistical Mechanics and Dynamics
3(20)
John T. Chalker
1.1 Introduction
3(2)
1.2 Models
5(1)
1.3 Some Experimental Facts
6(2)
1.4 Classical Ground State Degeneracy
8(2)
1.5 Order by Disorder
10(4)
1.6 Ground State Correlations
14(3)
1.7 Dynamics
17(4)
1.8 Final Remarks
21(2)
References
21(2)
2 Introduction to Quantum Spin Liquids
23(22)
Claire Lhuillier
Gregoire Misguich
2.1 Introduction
23(4)
2.2 Basic Building Blocks of VBC and RVB Physics: The Valence Bonds
27(2)
2.3 Valence-Bond Crystals
29(4)
2.3.1 Zeroth-Order VBC Wave Function
30(1)
2.3.2 Quantum Fluctuations in VBCs
31(1)
2.3.3 VBC Excitations
32(1)
2.4 Resonating-Valence-Bond Spin Liquids
33(3)
2.5 VBCs or RVB Spin Liquids on Kagome and Pyrochlore Lattices?
36(2)
2.6 Conclusion
38(7)
References
39(6)
Part II Probing Frustrated Magnets
3 Neutron Scattering and Highly Frustrated Magnetism
45(34)
Steven T. Bramwell
3.1 Introduction
45(2)
3.2 What Neutron Scattering Measures
47(11)
3.2.1 Scattering Triangle
47(1)
3.2.2 Partial Differential Cross Section
48(1)
3.2.3 Relation to Sample Properties
49(1)
3.2.4 Scattering from Atomic Magnetic Moments
50(1)
3.2.5 Orientation Factor and Form Factor
50(1)
3.2.6 General Expression for the Neutron Scattering
51(1)
3.2.7 Real Experiments
52(1)
3.2.8 Powder Averaging
52(1)
3.2.9 Static Approximation
52(1)
3.2.10 Wavevector Dependent Magnetic Moment and Susceptibility
53(1)
3.2.11 Fully Ordered Magnet
54(1)
3.2.12 Magnet with Full or Partial Disorder
55(1)
3.2.13 Validity of the Static Approximation
55(1)
3.2.14 Generalised Susceptibility
56(1)
3.2.15 Neutron Spectroscopy
57(1)
3.3 Typical Neutron Scattering Patterns
58(7)
3.3.1 Scattering Plane
58(1)
3.3.2 Free Energy
58(2)
3.3.3 Ideal Paramagnet
60(1)
3.3.4 Conventional Magnet Above TC
60(1)
3.3.5 Conventional Magnet Below TC
61(1)
3.3.6 Cooperative Paramagnet
62(1)
3.3.7 Absent Pinch Points
63(1)
3.3.8 Dynamical Signature of Cooperative Paramagnetism
64(1)
3.4 Experimental Results
65(11)
3.4.1 Cooperative Paramagnet States
65(5)
3.4.2 Ordered States
70(4)
3.4.3 Excited States
74(2)
3.5 Conclusions
76(3)
References
77(2)
4 NMR and μSR in Highly Frustrated Magnets
79(28)
Pietro Carretta
Amit Keren
4.1 Basic Aspects of NMR and μSR Techniques
79(12)
4.1.1 Line Shift and Line Width
80(3)
4.1.2 Nuclear and Muon Spin-Lattice Relaxation Rate 1/T1
83(2)
4.1.3 μSR: The Static Case
85(3)
4.1.4 μSR: The Dynamic Case
88(3)
4.2 From Zero- to Three-Dimensional Frustrated Magnets
91(16)
4.2.1 Molecular Magnets
91(1)
4.2.2 Antiferromagnets on a Square Lattice with Competing Interactions: The J1-J2 Model
92(3)
4.2.3 Magnetic Frustration on a Triangular Lattice
95(2)
4.2.4 μSR and NMR in the Spin-1/2 Kagome Lattice ZnCu3(OH)6Cl2
97(1)
4.2.5 The Problem of μ+ Relaxation in Some Kagome Lattices
98(3)
4.2.6 Persistent Dynamics and Lattice Distortions in the Pyrochlore Lattice
101(2)
References
103(4)
5 Optical Techniques for Systems with Competing Interactions
107(24)
Joachim Deisenhofer
Peter Lemmens
5.1 Introduction
107(1)
5.2 Inelastic Light-Scattering
108(2)
5.3 Inelastic Phonon Light-Scattering
110(1)
5.4 Inelastic Magnetic, Quasielastic, and Electronic Light Scattering
111(4)
5.5 The IR Experiment
115(1)
5.6 Spins, Phonons, and Light
116(2)
5.7 Spin-Phonon Interaction in Cr Spinels
118(4)
5.8 Exciton-Magnon Absorption in KCuF3
122(9)
References
124(7)
Part III Frustrated Systems
6 The Geometries of Triangular Magnetic Lattices
131(24)
Robert J. Cava
Katharine L. Holman
Tyrel McQueen
Eric J. Welsh
D. Vincent West
Anthony J. Williams
6.1 Introduction
131(1)
6.2 Two-Dimensional Structures
132(9)
6.2.1 Planes of Edge-Sharing Triangles
132(4)
6.2.2 Planes of Corner-Sharing Triangles
136(5)
6.3 Three-Dimensional Structures
141(10)
6.4 Note on Synthesis of the Compounds
151(1)
6.5 Conclusion
151(4)
References
152(3)
7 Highly Frustrated Magnetism in Spinels
155(22)
Hidenori Takagi
Seiji Niitaka
7.1 Introduction
155(1)
7.2 Spinel Structure
156(1)
7.3 Basic Electronic Configuration
157(1)
7.4 Uniqueness of the Spinel as a Frustrated Magnet
157(2)
7.5 Materials Overview of Spinels
159(2)
7.6 Frustration in Selected Spinels
161(11)
7.6.1 Pyrochlore Antiferromagnets in Spinel Oxides - B-site Frustration
161(6)
7.6.2 Frustrated Spins on Spinel A Sites
167(1)
7.6.3 Frustrated Magnets based on Cation-ordered Spinels: The Hyper-Kagome Lattice of Na4Ir3O8
168(3)
7.6.4 Charge Frustration in Mixed-valent Spinels
171(1)
7.7 Summary
172(5)
References
173(4)
8 Experimental Studies of Pyrochlore Antiferromagnets
177(30)
Bruce D. Gaulin
Jason S. Gardner
8.1 Introduction
177(1)
8.2 The Cubic Pyrochlores
178(2)
8.3 The Spin Liquid Ground State in Tb2Ti2O7
180(5)
8.4 Ordered Ground States in Tb2Ti2O7
185(5)
8.5 Structural Fluctuations in the Spin Liquid State of Tb2Ti2O7
190(5)
8.6 Magnetic Order and Fluctuations in Tb2Sn2O7
195(8)
8.6.1 Phase Transitions and Fluctuations in Gd2Ti2O7 and Gd2Sn2O7
198(5)
8.7 Conclusions
203(4)
References
204(3)
9 Kagome Antiferromagnets: Materials Vs. Spin Liquid Behaviors
207(34)
Philippe Mendels
Andrew S. Wills
9.1 A Short Theoretical Survey: What would be the Ideal Kagome Antiferromagnet?
208(2)
9.2 The Jarosites
210(8)
9.2.1 Synthesis and the Jarosite Crystal Structure: Idealized and Disordered
210(5)
9.2.2 Fe jarosites: S = 5/2 Kagome Antiferromagnets
215(2)
9.2.3 Cr Jarosites- S = 3/2 Kagome Antiferromagnets
217(1)
9.2.4 Conclusion
218(1)
9.3 Pyrochlore Slabs
218(7)
9.3.1 Synthesis
218(1)
9.3.2 Magnetic Network
219(1)
9.3.3 Generic Physics
220(2)
9.3.4 Non-magnetic Defects
222(2)
9.3.5 Concluding Remarks
224(1)
9.4 Towards S = 1/2 Ideal Compounds
225(8)
9.4.1 Volborthite
225(3)
9.4.2 Herbertsmithite: "An end to the Drought of Quantum Spin Liquids [ 100]"
228(5)
9.5 Other Compounds
233(2)
9.5.1 Organic Materials
233(1)
9.5.2 Y0.5Ca0.5BaCo4O7
234(1)
9.5.3 Langasites
234(1)
9.6 Conclusion
235(6)
References
236(5)
Part IV Specific Effects in Frustrated Magnets
10 Magnetization Plateaus
241(28)
Masashi Takigawa
Frederic Mila
10.1 Introduction
241(1)
10.2 Mechanisms for Formation of Magnetization Plateaus
242(9)
10.2.1 Spin Gap
243(1)
10.2.2 Quantized Plateaus
244(1)
10.2.3 Order by Disorder
245(1)
10.2.4 Superfluid-Insulator Transition
246(1)
10.2.5 `Quantum' Plateaus
247(2)
10.2.6 High-Order Plateaus
249(1)
10.2.7 Transition into Plateaus
250(1)
10.3 Experimental Observation of Magnetization Plateaus
251(13)
10.3.1 `Classical' Plateaus in Triangular and Pyrochlore Lattices
252(3)
10.3.2 SrCu2(BO3)2 and the Shastry-Sutherland Model
255(3)
10.3.3 `Quantum' Plateaux and Spin Superstructure in SrCu2(BO3)2
258(3)
10.3.4 Phase Diagram of SrCu2(BO3)2
261(2)
10.3.5 RB4: A New Family of Shastry-Sutherland System
263(1)
10.4 Conclusion
264(5)
References
264(5)
11 Spin-Lattice Coupling in Frustrated Antiferromagnets
269(24)
Oleg Tchernyshyov
Gia-Wei Chern
11.1 Introduction
269(1)
11.2 Spin-Driven Jahn-Teller Effect in a Tetrahedron
270(8)
11.2.1 Generalized Coordinates and Forces
271(2)
11.2.2 Four S = 1/2 Spins on a Tetrahedron
273(2)
11.2.3 Four Classical Spins on a Tetrahedron
275(1)
11.2.4 Color Notation and Other Useful Analogies
276(1)
11.2.5 Spin-Jahn-Teller Effect on a Triangle
276(2)
11.3 Models with Local Phonon Modes
278(2)
11.3.1 Half-Magnetization Plateau in ACr2O4 Spinels
279(1)
11.4 Collective Spin-Jahn-Teller Effect on the Pyrochlore Lattice
280(2)
11.5 Collective Jahn-Teller Effect in CdCr2O4
282(7)
11.5.1 Spiral Magnetic Order in CdCr2O4
283(1)
11.5.2 Theory of Spiral Magnetic Order
284(5)
11.6 Summary and Open Questions
289(4)
References
290(3)
12 Spin Ice
293(38)
Michel J.P. Gingras
12.1 Introduction
293(1)
12.2 Water Ice, Pauling Entropy, and Anderson Model
294(4)
12.2.1 Water Ice and Pauling Model
294(2)
12.2.2 Cation Ordering in Inverse Spinels and Antiferromagnetic Pyrochlore Ising Model
296(2)
12.3 Discovery of Spin Ice
298(11)
12.3.1 Rare-Earth Pyrochlore Oxides: Generalities
298(1)
12.3.2 Microscopic Hamiltonian: Towards an Effective Ising Model
299(5)
12.3.3 Discovery of Spin Ice in Ho2Ti2O7
304(1)
12.3.4 Nearest-Neighbor Ferromagnetic (111) Ising Model and Pauling's Entropy
305(2)
12.3.5 Residual Entropy of Dy2Ti2O7 and Ho2Ti2O7
307(2)
12.4 Dipolar Spin-Ice Model
309(10)
12.4.1 Competing Interactions in the Dipolar Spin-Ice Model
309(3)
12.4.2 Mean-Field Theory
312(4)
12.4.3 Loop Monte Carlo Simulations and Phase Diagram of Dipolar Spin Ice
316(2)
12.4.4 Origin of Ice Rules in Dipolar Spin Ice
318(1)
12.5 Current Research Topics in Spin Ices and Related Materials
319(6)
12.5.1 Magnetic-Field Effects
319(3)
12.5.2 Dynamical Properties and Role of Disorder
322(1)
12.5.3 Beyond the Dipolar Spin-Ice Model
322(1)
12.5.4 Metallic Spin Ice
322(1)
12.5.5 Artificial Spin Ice
323(1)
12.5.6 Stuffed Spin Ice
323(1)
12.5.7 Quantum Mechanics, Dynamics, and Order in Spin Ices
323(1)
12.5.8 Coulomb Phase, Monopoles and Dirac Strings in Spin Ices
324(1)
12.6 Conclusion
325(6)
References
326(5)
13 Spin Nematic Phases in Quantum Spin Systems
331(34)
Karlo Penc
Andreas M. Lauchli
13.1 Introduction and Materials
331(2)
13.2 Multipolar States of a Single Spin
333(3)
13.3 Competition Between Dipoles and Quadrupoles
336(4)
13.3.1 The Bilinear-Biquadratic Model
336(2)
13.3.2 Energy Spectra of Small Clusters
338(2)
13.4 Quadrupolar Ordering in S = 1 Systems
340(15)
13.4.1 Variational Phase Diagram
340(6)
13.4.2 One- and Two-Magnon Instability of the Fully Polarized State
346(1)
13.4.3 Spin-Wave Theory for the Ferroquadrupolar Phase
347(6)
13.4.4 Numerical Approach
353(2)
13.5 From Chains to the Square Lattice
355(2)
13.6 Nematic Ordering in S = 1/2 Systems
357(2)
13.7 Conclusions
359(6)
References
360(5)
Part V Advanced Theoretical Methods and Concepts in Frustrated Magnetism
14 Schwinger Bosons Approaches to Quantum Antiferromagnetism
365(14)
Assa Auerbach
Daniel P. Arovas
14.1 SU(N) Heisenberg Models
365(1)
14.2 Schwinger Representation of SU(N) Antiferromagnets
366(3)
14.2.1 Bipartite Antiferromagnet
367(1)
14.2.2 Non-bipartite (Frustrated) Antiferromagnets
368(1)
14.3 Mean Field Hamiltonian
369(4)
14.3.1 Mean Field Equations
371(2)
14.4 The Mean Field Antiferromagnetic Ground State
373(2)
14.5 Staggered Magnetization in the Layered Antiferromagnet
375(4)
References
377(2)
15 Variational Wave Functions for Frustrated Magnetic Models
379(28)
Federico Becca
Luca Capriotti
Alberto Parola
Sandro Sorella
15.1 Introduction
379(3)
15.2 Symmetries of the Wave Function: General Properties
382(2)
15.3 Symmetries in the Two-dimensional Case
384(4)
15.3.1 The Marshall-Peierls Sign Rule
386(1)
15.3.2 Spin Correlations
387(1)
15.4 Connection with the Bosonic Representation
388(2)
15.5 Antiferromagnetic Order
390(2)
15.6 Numerical Results
392(10)
15.6.1 One-dimensional Lattice
392(4)
15.6.2 Two-dimensional Lattice
396(6)
15.7 Other Frustrated Lattices
402(2)
15.8 Conclusions
404(3)
References
405(2)
16 Quantum Spin Liquids and Fractionalization
407(30)
Gregoire Misguich
16.1 Introduction
407(2)
16.2 What is a Spin Liquid?
409(7)
16.2.1 Absence of Magnetic Long-Range Order (Definition 1)
409(1)
16.2.2 Absence of Spontaneously Broken Symmetry (Definition 2)
409(1)
16.2.3 Fractional Excitations (Definition 3)
410(5)
16.2.4 Half-odd-integer Spins and the Lieb-Schultz-Mattis-Hastings Theorem
415(1)
16.3 Mean Fields and Gauge Fields
416(11)
16.3.1 Fermionic Representation of Heisenberg Models
416(2)
16.3.2 Local SU(2) Gauge Invariance
418(1)
16.3.3 Mean-field (Spin-liquid) States
418(4)
16.3.4 Gauge Fluctuations
422(5)
16.4 Z2 Spin Liquids
427(5)
16.4.1 Short-range RVB Description
427(1)
16.4.2 Z2 Gauge Theory, Spinon Deconfinement, and Visons
428(2)
16.4.3 Examples
430(1)
16.4.4 How to Detect a Gapped Z2 Liquid
431(1)
16.5 Gapless (Algebraic) Liquids
432(1)
16.6 Other Spin Liquids
432(1)
16.7 Conclusion
433(4)
References
433(4)
17 Quantum Dimer Models
437(44)
Roderich Moessner
Kumar S. Raman
17.1 Introduction
437(1)
17.2 How Quantum Dimer Models Arise
438(5)
17.2.1 Link Variables and Hard Constraints
438(1)
17.2.2 The Origin of Constraints
439(1)
17.2.3 Tunable Constraints
440(1)
17.2.4 Adding Quantum Dynamics
441(2)
17.3 The Quantum Dimer Model Hubert Space
443(4)
17.3.1 Topological Invariants
443(2)
17.3.2 Topological Order
445(1)
17.3.3 Fractionalisation
446(1)
17.4 QDM Phase Diagrams
447(9)
17.4.1 General Structure of Phase Diagrams
447(2)
17.4.2 Z2 RVB Liquid Phase
449(2)
17.4.3 U(1) RVB Liquid Phase
451(1)
17.4.4 Deconfined Critical Points
452(1)
17.4.5 Valence Bond Crystals
452(3)
17.4.6 Summary of Phase Diagrams
455(1)
17.5 The Rokhsar-Kivelson Point
456(4)
17.5.1 Ground-state Wavefunction
456(1)
17.5.2 Fractionalisation and Deconfinement
457(1)
17.5.3 Spatial Correlations
457(1)
17.5.4 Excited States
458(1)
17.5.5 A Special Liquid Point or part of a Liquid Phase?
459(1)
17.6 Resonons, Photons, and Pions: Excitations in the Single mode Approximation
460(2)
17.7 Dualities and Gauge Theories
462(3)
17.7.1 Emergence of the QDM
463(1)
17.7.2 Continuum Limit of the Gauge Theory
464(1)
17.8 Height Representation
465(5)
17.9 Numerical Methods
470(1)
17.10 Dimer Phases in SU(2) Invariant Models
471(4)
17.10.1 Overlap Expansion
472(1)
17.10.2 Decoration
473(1)
17.10.3 Large-N
474(1)
17.10.4 Klein Models: SU(2) Invariant Spin Liquids
475(1)
17.11 Outlook
475(6)
17.11.1 Hopping Fermions
476(1)
17.11.2 ...and much more
476(1)
References
477(4)
18 Numerical Simulations of Frustrated Systems
481(32)
Andreas M. Lauchli
18.1 Overview of Methods
481(1)
18.2 Classical Monte Carlo
481(4)
18.3 Quantum Monte Carlo
485(3)
18.3.1 Stochastic Series Expansion (SSE)
485(2)
18.3.2 Green-function Monte Carlo
487(1)
18.4 Series Expansions
488(1)
18.4.1 High-temperature Series
488(1)
18.4.2 T = 0 Perturbative Expansions for Ground- and Excited-state Properties
489(1)
18.5 Density-Matrix Renormalization Group (DMRG)
489(2)
18.5.1 Finite T
490(1)
18.5.2 Dynamical Response Functions
490(1)
18.5.3 DMRG in two and more Dimensions
491(1)
18.6 Exact Diagonalization (ED)
491(15)
18.6.1 Basis Construction
492(1)
18.6.2 Coding of Basis States
493(1)
18.6.3 Symmetrized Basis States
494(2)
18.6.4 Hamiltonian
496(1)
18.6.5 Eigensolvers
497(2)
18.6.6 Implementation Details and Performance Aspects
499(1)
18.6.7 Observables
500(3)
18.6.8 Dynamical Response Functions
503(1)
18.6.9 Time Evolution
504(1)
18.6.10 Finite Temperatures
505(1)
18.7 Miscellaneous Further Methods
506(2)
18.7.1 Classical Spin Dynamics (Molecular Dynamics)
506(1)
18.7.2 Coupled-Cluster Method
506(1)
18.7.3 Dynamical Mean-Field Theory (DMFT)
507(1)
18.7.4 Contractor Renormalization (CORE)
507(1)
18.7.5 SR-RVB Calculations
507(1)
18.8 Source Code Availability
508(5)
References
509(4)
19 Exact Results in Frustrated Quantum Magnetism
513(24)
Shin Miyahara
19.1 Introduction
513(2)
19.1.1 Dimer Model
514(1)
19.2 Exact Results in Spin-1/2 Heisenberg Models
515(11)
19.2.1 Exact Ground States in Coupled Triangular Cluster Models
516(6)
19.2.2 Exact Ground States in Coupled Tetrahedral Cluster Models
522(2)
19.2.3 Realization of Exact Ground States
524(2)
19.3 Exact Results in Frustrated Spin-1/2 Models with Four-Spin Interactions
526(8)
19.3.1 General Ladder Model with Four-Spin Interactions
526(5)
19.3.2 Two-Dimensional Model with Four-Spin Interactions
531(3)
19.4 Conclusion
534(3)
References
535(2)
20 Strong-Coupling Expansion and Effective Hamiltonians
537(26)
Frederic Mila
Kai Phillip Schmidt
20.1 Introduction
537(1)
20.2 Strong-Coupling Expansion
538(9)
20.2.1 Second-Order Perturbation Theory
539(1)
20.2.2 High-Order Perturbation Theory
539(1)
20.2.3 Examples
540(7)
20.3 Alternative Approaches Yielding Effective Hamiltonians
547(9)
20.3.1 Canonical Transformation
547(1)
20.3.2 Continuous Unitary Transformation
548(7)
20.3.3 Contractor Renormalization
555(1)
20.4 Conclusions
556(7)
References
558(5)
Part VI Frustration, Charge Carriers and Orbital Degeneracy
21 Mobile Holes in Frustrated Quantum Magnets and Itinerant Fermions on Frustrated Geometries
563
Didier Poilblanc
Hirokazu Tsunetsugu
21.1 Introduction
563(1)
21.2 Doping Holes in Frustrated Quantum Magnets
564(5)
21.2.1 The Holon-Spinon Deconfinement Scenario
564(1)
21.2.2 Single Hole Doped in Frustrated Mott Insulators
565(3)
21.2.3 Hole Pairing and Superconductivity
568(1)
21.3 Doped Quantum Dimer Model
569(6)
21.3.1 Origin of the Quantum Dimer Model
569(2)
21.3.2 Phase Diagrams at Zero Doping
571(1)
21.3.3 Connection to the XXZ Magnet on the Checkerboard Lattice
571(2)
21.3.4 Bosonic Doped Quantum Dimer Model
573(1)
21.3.5 Non-Frobenius Doped Quantum Dimer Model on the Square Lattice
574(1)
21.4 Mott Transition on the Triangular Lattice
575(4)
21.4.1 Frustration in Itinerant Electron Systems
575(1)
21.4.2 Mott Transition in Organic Compounds with Triangular Geometry
575(1)
21.4.3 Mott Transition in the Triangular-Lattice Hubbard Model
576(3)
21.5 Ordering Phenomena at Commensurate Fermion Densities on Frustrated Geometries
579(5)
21.5.1 Bond Order Waves from Nesting Properties of the Fermi surface
580(1)
21.5.2 Metal-Insulator Transitions and Frustrated Charge Order
581(2)
21.5.3 Away from Commensurability: Doping the Resonating-Singlet-Pair Crystal
583(1)
21.6 Summary
584
References
584