Preface |
|
xi | |
|
|
xiii | |
1 Introduction |
|
1 | (8) |
|
1.1 Examples of types of data |
|
|
2 | (1) |
|
|
3 | (2) |
|
1.3 A first view on the models |
|
|
5 | (4) |
2 The likelihood principle |
|
9 | (32) |
|
|
9 | (1) |
|
2.2 Point estimation theory |
|
|
10 | (4) |
|
2.3 The likelihood function |
|
|
14 | (3) |
|
|
17 | (1) |
|
2.5 The information matrix |
|
|
18 | (2) |
|
2.6 Alternative parameterizations of the likelihood |
|
|
20 | (1) |
|
2.7 The maximum likelihood estimate (MLE) |
|
|
21 | (1) |
|
2.8 Distribution of the ML estimator |
|
|
22 | (1) |
|
2.9 Generalized loss-function and deviance |
|
|
23 | (1) |
|
2.10 Quadratic approximation of the log-likelihood |
|
|
23 | (2) |
|
2.11 Likelihood ratio tests |
|
|
25 | (2) |
|
2.12 Successive testing in hypothesis chains |
|
|
27 | (6) |
|
2.13 Dealing with nuisance parameters |
|
|
33 | (5) |
|
|
38 | (3) |
3 General linear models |
|
41 | (46) |
|
|
41 | (1) |
|
3.2 The multivariate normal distribution |
|
|
42 | (2) |
|
3.3 General linear models |
|
|
44 | (4) |
|
3.4 Estimation of parameters |
|
|
48 | (5) |
|
3.5 Likelihood ratio tests |
|
|
53 | (5) |
|
3.6 Tests for model reduction |
|
|
58 | (6) |
|
|
64 | (6) |
|
3.8 Inference on parameters in parameterized models |
|
|
70 | (3) |
|
3.9 Model diagnostics: residuals and influence |
|
|
73 | (4) |
|
3.10 Analysis of residuals |
|
|
77 | (1) |
|
3.11 Representation of linear models |
|
|
78 | (3) |
|
3.12 General linear models in R |
|
|
81 | (2) |
|
|
83 | (4) |
4 Generalized linear models |
|
87 | (70) |
|
4.1 Types of response variables |
|
|
89 | (1) |
|
4.2 Exponential families of distributions |
|
|
90 | (9) |
|
4.3 Generalized linear models |
|
|
99 | (3) |
|
4.4 Maximum likelihood estimation |
|
|
102 | (9) |
|
4.5 Likelihood ratio tests |
|
|
111 | (4) |
|
4.6 Test for model reduction |
|
|
115 | (1) |
|
4.7 Inference on individual parameters |
|
|
116 | (1) |
|
|
117 | (35) |
|
4.9 Generalized linear models in R |
|
|
152 | (1) |
|
|
153 | (4) |
5 Mixed effects models |
|
157 | (68) |
|
5.1 Gaussian mixed effects model |
|
|
159 | (1) |
|
5.2 One-way random effects model |
|
|
160 | (14) |
|
5.3 More examples of hierarchical variation |
|
|
174 | (5) |
|
5.4 General linear mixed effects models |
|
|
179 | (6) |
|
5.5 Bayesian interpretations |
|
|
185 | (6) |
|
5.6 Posterior distributions |
|
|
191 | (1) |
|
5.7 Random effects for multivariate measurements |
|
|
192 | (5) |
|
5.8 Hierarchical models in metrology |
|
|
197 | (2) |
|
5.9 General mixed effects models |
|
|
199 | (2) |
|
5.10 Laplace approximation |
|
|
201 | (17) |
|
5.11 Mixed effects models in R |
|
|
218 | (1) |
|
|
219 | (6) |
6 Hierarchical models |
|
225 | (20) |
|
6.1 Introduction, approaches to modeling of overdispersion |
|
|
225 | (1) |
|
6.2 Hierarchical Poisson Gamma model |
|
|
226 | (7) |
|
6.3 Conjugate prior distributions |
|
|
233 | (4) |
|
6.4 Examples of one-way random effects models |
|
|
237 | (5) |
|
6.5 Hierarchical generalized linear models |
|
|
242 | (1) |
|
|
243 | (2) |
7 Real life inspired problems |
|
245 | (10) |
|
|
246 | (3) |
|
7.2 Depreciation of used cars |
|
|
249 | (1) |
|
7.3 Young fish in the North Sea |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
252 | (3) |
A Supplement on the law of error propagation |
|
255 | (2) |
|
A.1 Function of one random variable |
|
|
255 | (1) |
|
A.2 Function of several random variables |
|
|
255 | (2) |
B Some probability distributions |
|
257 | (28) |
|
B.1 The binomial distribution model |
|
|
259 | (3) |
|
B.2 The Poisson distribution model |
|
|
262 | (2) |
|
B.3 The negative binomial distribution model |
|
|
264 | (2) |
|
B.4 The exponential distribution model |
|
|
266 | (2) |
|
B.5 The gamma distribution model |
|
|
268 | (7) |
|
B.6 The inverse Gaussian distribution model |
|
|
275 | (5) |
|
B.7 Distributions derived from the normal distribution |
|
|
280 | (4) |
|
|
284 | (1) |
C List of symbols |
|
285 | (2) |
Bibliography |
|
287 | (6) |
Index |
|
293 | |