1 Introduction |
|
1 | (28) |
|
1.1 Special Principle of Relativity |
|
|
1 | (2) |
|
|
3 | (3) |
|
1.3 Scalars, Vectors, and Tensors |
|
|
6 | (2) |
|
1.4 Galilean Transformations |
|
|
8 | (3) |
|
1.5 Principle of Least Action |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
14 | (3) |
|
|
17 | (2) |
|
|
19 | (2) |
|
|
21 | (2) |
|
1.11 Michelson-Morley Experiment |
|
|
23 | (2) |
|
1.12 Towards the Theory of Special Relativity |
|
|
25 | (1) |
|
|
26 | (3) |
2 Special Relativity |
|
29 | (18) |
|
2.1 Einstein's Principle of Relativity |
|
|
29 | (1) |
|
|
30 | (4) |
|
2.3 Lorentz Transformations |
|
|
34 | (4) |
|
|
38 | (1) |
|
|
39 | (4) |
|
2.5.1 Superluminal Motion |
|
|
42 | (1) |
|
2.6 Example: Cosmic Ray Muons |
|
|
43 | (1) |
|
|
44 | (3) |
3 Relativistic Mechanics |
|
47 | (20) |
|
3.1 Action for a Free Particle |
|
|
47 | (2) |
|
|
49 | (4) |
|
3.2.1 3-Dimensional Formalism |
|
|
49 | (2) |
|
3.2.2 4-Dimensional Formalism |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
54 | (1) |
|
3.5 Example: Colliders Versus Fixed-Target Accelerators |
|
|
55 | (1) |
|
3.6 Example: The GZK Cut-Off |
|
|
56 | (2) |
|
|
58 | (1) |
|
3.8 Lagrangian Formalism for Fields |
|
|
59 | (3) |
|
3.9 Energy-Momentum Tensor |
|
|
62 | (2) |
|
|
64 | (2) |
|
3.10.1 Energy-Momentum Tensor of a Free Point-Like Particle |
|
|
64 | (1) |
|
3.10.2 Energy-Momentum Tensor of a Perfect Fluid |
|
|
65 | (1) |
|
|
66 | (1) |
4 Electromagnetism |
|
67 | (18) |
|
|
68 | (3) |
|
4.2 Motion of a Charged Particle |
|
|
71 | (2) |
|
4.2.1 3-Dimensional Formalism |
|
|
71 | (2) |
|
4.2.2 4-Dimensional Formalism |
|
|
73 | (1) |
|
4.3 Maxwell's Equations in Covariant Form |
|
|
73 | (4) |
|
4.3.1 Homogeneous Maxwell's Equations |
|
|
73 | (2) |
|
4.3.2 Inhomogeneous Maxwell's Equations |
|
|
75 | (2) |
|
|
77 | (1) |
|
4.5 Energy-Momentum Tensor of the Electromagnetic Field |
|
|
78 | (1) |
|
|
79 | (5) |
|
4.6.1 Motion of a Charged Particle in a Constant Uniform Electric Field |
|
|
79 | (2) |
|
4.6.2 Electromagnetic Field Generated by a Charged Particle |
|
|
81 | (3) |
|
|
84 | (1) |
5 Riemannian Geometry |
|
85 | (22) |
|
|
85 | (2) |
|
|
87 | (9) |
|
|
88 | (3) |
|
|
91 | (4) |
|
5.2.3 Properties of the Covariant Derivative |
|
|
95 | (1) |
|
|
96 | (2) |
|
|
98 | (6) |
|
|
98 | (2) |
|
5.4.2 Geometrical Interpretation |
|
|
100 | (2) |
|
5.4.3 Ricci Tensor and Scalar Curvature |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
105 | (2) |
6 General Relativity |
|
107 | (16) |
|
|
107 | (3) |
|
6.2 Einstein Equivalence Principle |
|
|
110 | (1) |
|
6.3 Connection to the Newtonian Potential |
|
|
111 | (2) |
|
6.4 Locally Inertial Frames |
|
|
113 | (2) |
|
6.4.1 Locally Minkowski Reference Frames |
|
|
113 | (1) |
|
6.4.2 Locally Inertial Reference Frames |
|
|
114 | (1) |
|
6.5 Measurements of Time Intervals |
|
|
115 | (1) |
|
6.6 Example: GPS Satellites |
|
|
116 | (2) |
|
6.7 Non-gravitational Phenomena in Curved Spacetimes |
|
|
118 | (3) |
|
|
121 | (2) |
7 Einstein's Gravity |
|
123 | (18) |
|
|
123 | (3) |
|
|
126 | (1) |
|
7.3 Einstein-Hilbert Action |
|
|
127 | (4) |
|
7.4 Matter Energy-Momentum Tensor |
|
|
131 | (4) |
|
|
131 | (1) |
|
|
131 | (3) |
|
7.4.3 Covariant Conservation of the Matter Energy-Momentum Tensor |
|
|
134 | (1) |
|
7.5 Pseudo-Tensor of Landau-Lifshitz |
|
|
135 | (3) |
|
|
138 | (1) |
|
|
139 | (2) |
8 Schwarzschild Spacetime |
|
141 | (22) |
|
8.1 Spherically Symmetric Spacetimes |
|
|
141 | (2) |
|
|
143 | (6) |
|
|
149 | (2) |
|
8.4 Motion in the Schwarzschild Metric |
|
|
151 | (3) |
|
8.5 Schwarzschild Black Holes |
|
|
154 | (3) |
|
|
157 | (3) |
|
8.6.1 Minkowski Spacetime |
|
|
157 | (1) |
|
8.6.2 Schwarzschild Spacetime |
|
|
158 | (2) |
|
|
160 | (1) |
|
|
161 | (2) |
9 Classical Tests of General Relativity |
|
163 | (16) |
|
9.1 Gravitational Redshift of Light |
|
|
164 | (2) |
|
9.2 Perihelion Precession of Mercury |
|
|
166 | (3) |
|
|
169 | (4) |
|
|
173 | (4) |
|
9.5 Parametrized Post-Newtonian Formalism |
|
|
177 | (1) |
|
|
178 | (1) |
10 Black Holes |
|
179 | (26) |
|
|
179 | (1) |
|
10.2 Reissner-Nordstr6m Black Holes |
|
|
180 | (1) |
|
|
181 | (12) |
|
10.3.1 Equatorial Circular Orbits |
|
|
183 | (6) |
|
10.3.2 Fundamental Frequencies |
|
|
189 | (3) |
|
|
192 | (1) |
|
|
193 | (1) |
|
10.5 Gravitational Collapse |
|
|
194 | (6) |
|
|
196 | (2) |
|
10.5.2 Homogeneous Dust Collapse |
|
|
198 | (2) |
|
|
200 | (3) |
|
10.6.1 Reissner-Nordstrom Spacetime |
|
|
200 | (1) |
|
|
201 | (1) |
|
10.6.3 Oppenheimer-Snyder Spacetime |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
204 | (1) |
11 Cosmological Models |
|
205 | (18) |
|
11.1 Friedmann-Robertson-Walker Metric |
|
|
205 | (3) |
|
|
208 | (2) |
|
|
210 | (4) |
|
|
211 | (1) |
|
11.3.2 Matter Dominated Universe |
|
|
211 | (2) |
|
11.3.3 Radiation Dominated Universe |
|
|
213 | (1) |
|
11.3.4 Vacuum Dominated Universe |
|
|
214 | (1) |
|
11.4 Properties of the Friedmann-Robertson-Walker Metric |
|
|
214 | (2) |
|
11.4.1 Cosmological Redshift |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (2) |
|
|
218 | (2) |
|
11.7 Destiny of the Universe |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (2) |
12 Gravitational Waves |
|
223 | (34) |
|
|
223 | (2) |
|
12.2 Gravitational Waves in Linearized Gravity |
|
|
225 | (6) |
|
|
226 | (2) |
|
12.2.2 Transverse-Traceless Gauge |
|
|
228 | (3) |
|
|
231 | (3) |
|
12.4 Energy of Gravitational Waves |
|
|
234 | (4) |
|
|
238 | (5) |
|
12.5.1 Gravitational Waves from a Rotating Neutron Star |
|
|
238 | (3) |
|
12.5.2 Gravitational Waves from a Binary System |
|
|
241 | (2) |
|
12.6 Astrophysical Sources |
|
|
243 | (4) |
|
12.6.1 Coalescing Black Holes |
|
|
244 | (1) |
|
12.6.2 Extreme-Mass Ratio Inspirals |
|
|
245 | (2) |
|
|
247 | (1) |
|
12.7 Gravitational Wave Detectors |
|
|
247 | (7) |
|
12.7.1 Resonant Detectors |
|
|
251 | (1) |
|
|
251 | (2) |
|
12.7.3 Pulsar Timing Arrays |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
254 | (3) |
13 Beyond Einstein's Gravity |
|
257 | (10) |
|
13.1 Spacetime Singularities |
|
|
257 | (2) |
|
13.2 Quantization of Einstein's Gravity |
|
|
259 | (2) |
|
13.3 Black Hole Thermodynamics and Information Paradox |
|
|
261 | (2) |
|
13.4 Cosmological Constant Problem |
|
|
263 | (2) |
|
|
265 | (1) |
|
|
265 | (2) |
Appendix A: Algebraic Structures |
|
267 | (6) |
Appendix B: Vector Calculus |
|
273 | (4) |
Appendix C: Differentiable Manifolds |
|
277 | (8) |
Appendix D: Ellipse Equation |
|
285 | (2) |
Appendix E: Mathematica Packages for Tensor Calculus |
|
287 | (4) |
Appendix F: Interior Solution |
|
291 | (8) |
Appendix G: Metric Around a Slow-Rotating Massive Body |
|
299 | (4) |
Appendix H: Friedmann-Robertson-Walker Metric |
|
303 | (4) |
Appendix I: Suggestions for Solving the Problems |
|
307 | (24) |
Subject Index |
|
331 | |