Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Global Analysis

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold $M$ determine the homology of the manifold.

Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on $M$ by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs.

This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed parametrized minimal surfaces in a compact Riemannian manifold, establishing Morse inequalities for perturbed versions of the energy function on the mapping space. It studies the bubbling which occurs when the perturbation is turned off, together with applications to the existence of closed minimal surfaces. The Morse-Sard theorem is used to develop transversality theory for both closed geodesics and closed minimal surfaces.

This book is based on lecture notes for graduate courses on "Topics in Differential Geometry", taught by the author over several years. The reader is assumed to have taken basic graduate courses in differential geometry and algebraic topology.

Recenzijos

This book provides a thoughtful introduction to classical geometric applications of global analysis in the context of geodesics and minimal surfaces...it would be a good choice of textbook for a graduate topics course that provides a more classical overview of the area." Renato G. Bettiol, Mathematical Reviews

Preface vii
Chapter 1 Infinite-dimensional Manifolds
1(70)
§1.1 A global setting for nonlinear DEs
1(1)
§1.2 Infinite-dimensional calculus
2(15)
§1.3 Manifolds modeled on Banach spaces
17(8)
§1.4 The basic mapping spaces
25(8)
§1.5 Homotopy type of the space of maps
33(6)
§1.6 The a- and w-Lemmas
39(1)
§1.7 The tangent and cotangent bundles
40(4)
§1.8 Differential forms
44(5)
§1.9 Riemannian and Finsler metrics
49(4)
§1.10 Vector fields and ODEs
53(2)
§1.11 Condition C
55(5)
§1.12 Birkhoff's minimax principle
60(3)
§1.13 de Rham cohomology
63(8)
Chapter 2 Morse Theory of Geodesies
71(54)
§2.1 Geodesies
71(5)
§2.2 Condition C for the action
76(5)
§2.3 Fibrations and the Fet-Lusternik Theorem
81(4)
§2.4 Second variation and nondegenerate critical points
85(6)
§2.5 The Sard-Smale Theorem
91(4)
§2.6 Existence of Morse functions
95(5)
§2.7 Bumpy metrics for smooth closed geodesies
100(8)
§2.8 Adding handles
108(6)
§2.9 Morse inequalities
114(4)
§2.10 The Morse-Witten complex
118(7)
Chapter 3 Topology of Mapping Spaces
125(44)
§3.1 Sullivan's theory of minimal models
125(6)
§3.2 Minimal models for spaces of paths
131(7)
§3.3 Gromov dimension
138(7)
§3.4 Infinitely many closed geodesies
145(3)
§3.5 Postnikov towers
148(7)
§3.6 Maps from surfaces
155(14)
Chapter 4 Harmonic and Minimal Surfaces
169(108)
§4.1 The energy of a smooth map
169(9)
§4.2 Minimal two-spheres and tori
178(10)
§4.3 Minimal surfaces of arbitrary topology
188(16)
§4.4 The a-energy
204(12)
§4.5 Morse theory for a perturbed energy
216(9)
§4.6 Bubbles
225(14)
§4.7 Existence of minimal two-spheres
239(10)
§4.8 Existence of higher genus minimal surfaces
249(7)
§4.9 Unstable minimal surfaces
256(11)
§4.10 An application to curvature and topology
267(10)
Chapter 5 Generic Metrics
277(80)
§5.1 Bumpy metrics for minimal surfaces
277(4)
§5.2 Local behavior of minimal surfaces
281(11)
§5.3 The two-variable energy revisited
292(16)
§5.4 Minimal surfaces without branch points
308(10)
§5.5 Minimal surfaces with simple branch points
318(16)
§5.6 Higher order branch points
334(13)
§5.7 Proof of the Transversal Crossing Theorem
347(2)
§5.8 Branched covers
349(8)
Bibliography 357(8)
Index 365
John Douglas Moore, University of California. Santa Barbara, CA.