Preface |
|
xi | |
Chapter 1 Fundamental Concepts |
|
1 | (66) |
|
|
1 | (18) |
|
|
1 | (2) |
|
|
3 | (3) |
|
|
6 | (5) |
|
Decomposition and Special Graphs |
|
|
11 | (3) |
|
|
14 | (5) |
|
1.2 Paths, Cycles, and Trails |
|
|
19 | (15) |
|
|
20 | (4) |
|
|
24 | (2) |
|
|
26 | (5) |
|
|
31 | (3) |
|
1.3 Vertex Degrees and Counting |
|
|
34 | (19) |
|
|
35 | (3) |
|
|
38 | (6) |
|
|
44 | (3) |
|
|
47 | (6) |
|
|
53 | (14) |
|
|
53 | (5) |
|
|
58 | (2) |
|
|
60 | (1) |
|
Orientations and Tournaments |
|
|
61 | (2) |
|
|
63 | (4) |
Chapter 2 Trees and Distance |
|
67 | (40) |
|
|
67 | (14) |
|
|
68 | (2) |
|
Distance in Trees and Graphs |
|
|
70 | (3) |
|
Disjoint Spanning Trees (optional) |
|
|
73 | (2) |
|
|
75 | (6) |
|
2.2 Spanning Trees and Enumeration |
|
|
81 | (14) |
|
|
81 | (2) |
|
|
83 | (4) |
|
Decomposition and Graceful Labelings |
|
|
87 | (2) |
|
Branchings and Eulerian Digraphs (optional) |
|
|
89 | (3) |
|
|
92 | (3) |
|
2.3 Optimization and Trees |
|
|
95 | (12) |
|
|
95 | (2) |
|
|
97 | (3) |
|
Trees in Computer Science (optional) |
|
|
100 | (3) |
|
|
103 | (4) |
Chapter 3 Matchings and Factors |
|
107 | (42) |
|
|
107 | (16) |
|
|
108 | (2) |
|
Hall's Matching Condition |
|
|
110 | (2) |
|
|
112 | (1) |
|
Independent Sets and Covers |
|
|
113 | (3) |
|
Dominating Sets (optional) |
|
|
116 | (2) |
|
|
118 | (5) |
|
3.2 Algorithms and Applications |
|
|
123 | (13) |
|
Maximum Bipartite Matching |
|
|
123 | (2) |
|
Weighted Bipartite Matching |
|
|
125 | (5) |
|
Stable Matchings (optional) |
|
|
130 | (2) |
|
Faster Bipartite Matching (optional) |
|
|
132 | (2) |
|
|
134 | (2) |
|
3.3 Matchings in General Graphs |
|
|
136 | (13) |
|
|
136 | (4) |
|
f-factors of Graphs (optional) |
|
|
140 | (2) |
|
Edmonds' Blossom Algorithm (optional) |
|
|
142 | (3) |
|
|
145 | (4) |
Chapter 4 Connectivity and Paths |
|
149 | (42) |
|
4.1 Cuts and Connectivity |
|
|
149 | (12) |
|
|
149 | (3) |
|
|
152 | (3) |
|
|
155 | (3) |
|
|
158 | (3) |
|
|
161 | (15) |
|
|
161 | (3) |
|
|
164 | (2) |
|
k-connected and k-edge-connected Graphs |
|
|
166 | (4) |
|
Applications of Menger's Theorem |
|
|
170 | (2) |
|
|
172 | (4) |
|
4.3 Network Flow Problems |
|
|
176 | (15) |
|
|
176 | (5) |
|
|
181 | (3) |
|
Supplies and Demands (optional) |
|
|
184 | (4) |
|
|
188 | (3) |
Chapter 5 Coloring of Graphs |
|
191 | (42) |
|
5.1 Vertex Colorings and Upper Bounds |
|
|
191 | (13) |
|
|
191 | (3) |
|
|
194 | (3) |
|
|
197 | (2) |
|
|
199 | (5) |
|
5.2 Structure of k-chromatic Graphs |
|
|
204 | (15) |
|
Graphs with Large Chromatic Number |
|
|
205 | (2) |
|
Extremal Problems and Turan's Theorem |
|
|
207 | (3) |
|
|
210 | (2) |
|
|
212 | (2) |
|
|
214 | (5) |
|
|
219 | (14) |
|
Counting Proper Colorings |
|
|
219 | (5) |
|
|
224 | (2) |
|
|
226 | (2) |
|
Counting Acyclic Orientations (optional) |
|
|
228 | (1) |
|
|
229 | (4) |
Chapter 6 Planar Graphs |
|
233 | (40) |
|
6.1 Embeddings and Euler's Formula |
|
|
233 | (13) |
|
|
233 | (3) |
|
|
236 | (5) |
|
|
241 | (2) |
|
|
243 | (3) |
|
6.2 Characterization of Planar Graphs |
|
|
246 | (11) |
|
Preparation for Kuratowski's Theorem |
|
|
247 | (1) |
|
|
248 | (4) |
|
Planarity Testing (optional) |
|
|
252 | (3) |
|
|
255 | (2) |
|
6.3 Parameters of Planarity |
|
|
257 | (16) |
|
Coloring of Planar Graphs |
|
|
257 | (4) |
|
|
261 | (5) |
|
Surfaces of Higher Genus (optional) |
|
|
266 | (3) |
|
|
269 | (4) |
Chapter 7 Edges and Cycles |
|
273 | (46) |
|
7.1 Line Graphs and Edge-coloring |
|
|
273 | (13) |
|
|
274 | (5) |
|
Characterization of Line Graphs (optional) |
|
|
279 | (3) |
|
|
282 | (4) |
|
|
286 | (13) |
|
|
287 | (1) |
|
|
288 | (5) |
|
Cycles in Directed Graphs (optional) |
|
|
293 | (1) |
|
|
294 | (5) |
|
7.3 Planarity, Coloring, and Cycles |
|
|
299 | (20) |
|
|
300 | (2) |
|
|
302 | (2) |
|
|
304 | (3) |
|
Flows and Cycle Covers (optional) |
|
|
307 | (7) |
|
|
314 | (5) |
Chapter 8 Additional Topics (optional) |
|
319 | (152) |
|
|
319 | (30) |
|
The Perfect Graph Theorem |
|
|
320 | (3) |
|
|
323 | (5) |
|
Other Classes of Perfect Graphs |
|
|
328 | (6) |
|
|
334 | (6) |
|
The Strong Perfect Graph Conjecture |
|
|
340 | (4) |
|
|
344 | (5) |
|
|
349 | (29) |
|
Hereditary Systems and Examples |
|
|
349 | (5) |
|
|
354 | (4) |
|
|
358 | (2) |
|
|
360 | (3) |
|
Matroid Minors and Planar Graphs |
|
|
363 | (3) |
|
|
366 | (3) |
|
|
369 | (3) |
|
|
372 | (6) |
|
|
378 | (18) |
|
The Pigeonhole Principle Revisited |
|
|
378 | (2) |
|
|
380 | (3) |
|
|
383 | (3) |
|
|
386 | (2) |
|
Sperner's Lemma and Bandwidth |
|
|
388 | (4) |
|
|
392 | (4) |
|
8.4 More Extremal Problems |
|
|
396 | (29) |
|
|
397 | (7) |
|
|
404 | (4) |
|
List Coloring and Choosability |
|
|
408 | (5) |
|
Partitions Using Paths and Cycles |
|
|
413 | (3) |
|
|
416 | (6) |
|
|
422 | (3) |
|
|
425 | (27) |
|
Existence and Expectation |
|
|
426 | (4) |
|
Properties of Almost All Graphs |
|
|
430 | (2) |
|
|
432 | (4) |
|
Evolution and Graph Parameters |
|
|
436 | (3) |
|
Connectivity, Cliques, and Coloring |
|
|
439 | (3) |
|
|
442 | (6) |
|
|
448 | (4) |
|
8.6 Eigenvalues of Graphs |
|
|
452 | (19) |
|
The Characteristic Polynomial |
|
|
453 | (3) |
|
Linear Algebra of Real Symmetric Matrices |
|
|
456 | (2) |
|
Eigenvalues and Graph Parameters |
|
|
458 | (2) |
|
Eigenvalues of Regular Graphs |
|
|
460 | (3) |
|
Eigenvalues and Expanders |
|
|
463 | (1) |
|
|
464 | (3) |
|
|
467 | (4) |
Appendix A: Mathematical Background |
|
471 | (22) |
|
|
471 | (4) |
|
|
475 | (4) |
|
|
479 | (4) |
|
|
483 | (2) |
|
Counting and Binomial Coefficients |
|
|
485 | (4) |
|
|
489 | (2) |
|
|
491 | (2) |
Appendix B: Optimization and Complexity |
|
493 | (14) |
|
|
493 | (3) |
|
|
496 | (3) |
|
|
499 | (6) |
|
|
505 | (2) |
Appendix C: Hints for Selected Exercises |
|
507 | (8) |
|
|
507 | (1) |
|
Supplemental Specific Hints |
|
|
508 | (7) |
Appendix D: Glossary of Terms |
|
515 | (18) |
Appendix E: Supplemental Reading |
|
533 | (34) |
Appendix F: References |
|
567 | (2) |
Author Index |
|
569 | (6) |
Subject Index |
|
575 | |