Atnaujinkite slapukų nuostatas

Introduction to Graph Theory [Kietas viršelis]

3.82/5 (198 ratings by Goodreads)
  • Formatas: Hardback, 484 pages, aukštis x plotis x storis: 238x165x23 mm, weight: 712 g, Illustrations
  • Išleidimo metai: 21-Dec-2004
  • Leidėjas: McGraw Hill Higher Education
  • ISBN-10: 0073204161
  • ISBN-13: 9780073204161
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 484 pages, aukštis x plotis x storis: 238x165x23 mm, weight: 712 g, Illustrations
  • Išleidimo metai: 21-Dec-2004
  • Leidėjas: McGraw Hill Higher Education
  • ISBN-10: 0073204161
  • ISBN-13: 9780073204161
Kitos knygos pagal šią temą:
Written by one of the leading authors in the field, this text provides a student-friendly approach to graph theory for undergraduates. Much care has been given to present the material at the most effective level for students taking a first course in graph theory. Gary Chartrand and Ping Zhang's lively and engaging style, historical emphasis, unique examples and clearly-written proof techniques make it a sound yet accessible text that stimulates interest in an evolving subject and exploration in its many applications.

This text is part of the Walter Rudin Student Series in Advanced Mathematics.

Introduction
Graphs and Graph Models
1(8)
Connected Graphs
9(10)
Common Classes of Graphs
19(7)
Multigraphs and Digraphs
26(5)
Degrees
The Degree of a Vertex
31(7)
Regular Graphs
38(5)
Degree Sequences
43(5)
Excursion: Graphs and Matrices
48(2)
Exploration: Irregular Graphs
50(5)
Isomorphic Graphs
The Definition of Isomorphism
55(8)
Isomorphism as a Relation
63(3)
Excursion: Graphs and Groups
66(10)
Excursion: Reconstruction and Solvability
76(9)
Trees
Bridges
85(2)
Trees
87(7)
The Minimum Spanning Tree Problem
94(7)
Excursion: The Number of Spanning Trees
101(6)
Connectivity
Cut-Vertices
107(4)
Blocks
111(4)
Connectivity
115(9)
Menger's Theorem
124(6)
Exploration: Geodetic Sets
130(3)
Traversability
Eulerian Graphs
133(7)
Hamiltonian Graphs
140(12)
Exploration: Hamiltonian Walks and Numbers
152(4)
Excursion: The Early Books of Graph Theory
156(5)
Digraphs
Strong Digraphs
161(8)
Tournaments
169(7)
Excursion: Decision--Making
176(4)
Exploration: Wine Bottle Problems
180(3)
Matchings and Factorization
Matchings
183(11)
Factorization
194(15)
Decompositions and Graceful Labelings
209(5)
Excursion: Instant Insanity
214(5)
Excursion: The Petersen Graph
219(5)
Exploration: γ-Labelings of Graphs
224(3)
Planarity
Planar Graphs
227(14)
Embedding Graphs on Surfaces
241(8)
Excursion: Graph Minors
249(4)
Exploration: Embedding Graphs in Graphs
253(6)
Coloring
The Four Color Problem
259(8)
Vertex Coloring
267(13)
Edge Coloring
280(8)
Excursion: The Heawood Map Coloring Theorem
288(5)
Exploration: Local Coloring
293(4)
Ramsey Numbers
The Ramsey Number of Graphs
297(10)
Turan's Theorem
307(7)
Exploration: Rainbow Ramsey Numbers
314(7)
Excursion: Erdos Numbers
321(6)
Distance
The Center of a Graph
327(6)
Distant Vertices
333(8)
Excursion: Locating Numbers
341(5)
Excursion: Detour and Directed Distance
346(5)
Exploration: Channel Assignment
351(6)
Exploration: Distance Between Graphs
357(4)
Domination
The Domination Number of a Graph
361(11)
Exploration: Stratification
372(5)
Exploration: Lights Out
377(4)
Excursion: And Still It Grows More Colorful
381(2)
Appendix
1. Sets and Logic
383(4)
Appendix
2. Equivalence Relations and Functions
387(4)
Appendix
3. Methods of Proof
391(6)
Solutions and Hints for Odd-Numbered Exercises 397(28)
References 425(12)
Index of Names 437(3)
Index of Mathematical Terms 440(7)
List of Symbols 447