Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Hilbert Space and the Theory of Spectral Multiplicity: Second Edition

  • Formatas: PDF+DRM
  • Išleidimo metai: 15-Nov-2017
  • Leidėjas: Dover Publications
  • Kalba: eng
  • ISBN-13: 9780486826837
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 15-Nov-2017
  • Leidėjas: Dover Publications
  • Kalba: eng
  • ISBN-13: 9780486826837
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. Author Paul R. Halmos notes in the Preface that his motivation in writing this text was to make available to a wider audience the results of the third chapter, the so-called multiplicity theory. The theory as he presents it deals with arbitrary spectral measures, including the multiplicity theory of normal operators on a not necessarily separable Hilbert space. His explication covers, as another useful special case, the multiplicity theory of unitary representations of locally compact abelian groups.
Suitable for advanced undergraduates and graduate students in mathematics, this volume's sole prerequisite is a background in measure theory. The distinguished mathematician E. R. Lorch praised the book in the Bulletin of the American Mathematical Society as "an exposition which is always fresh, proofs which are sophisticated, and a choice of subject matter which is certainly timely."