Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Homological Algebra

(Rutgers University, New Jersey)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Recenzijos

"It is...the ideal text for the working mathematician need- ing a detailed description of the fundamentals of the subject as it exists and is used today; the author has succeeded brilliantly in his avowed intention to break down 'the technological barriers between casual users and experts'." Kenneth A. Brown, Mathematical Reviews "By collecting, organizing, and presenting both the old and the new in homological algebra, Weibel has performed a valuable service. He has written a book that I am happy to have in my library." Joseph Rotman, Bulletin of the American Mathematical Society

Daugiau informacijos

A portrait of the subject of homological algebra as it exists today.
Introduction xi
Chain Complexes
1(29)
Complexes of R-Modules
1(4)
Operations on Chain Complexes
5(5)
Long Exact Sequences
10(5)
Chain Homotopies
15(3)
Mapping Cones and Cylinders
18(7)
More on Abelian Categories
25(5)
Derived Functors
30(36)
δ-Functors
30(3)
Projective Resolutions
33(5)
Injective Resolutions
38(5)
Left Derived Functors
43(6)
Right Derived Functors
49(2)
Adjoint Functors and Left/Right Exactness
51(7)
Balancing Tor and Ext
58(8)
Tor and Ext
66(25)
Tor for Abelian Groups
66(2)
Tor and Flatness
68(5)
Ext for Nice Rings
73(3)
Ext and Extensions
76(4)
Derived Functors of the Inverse Limit
80(7)
Universal Coefficient Theorems
87(4)
Homological Dimension
91(29)
Dimensions
91(4)
Rings of Small Dimension
95(4)
Change of Rings Theorems
99(5)
Local Rings
104(7)
Koszul Complexes
111(4)
Local Cohomology
115(5)
Spectral Sequences
120(40)
Introduction
120(2)
Terminology
122(5)
The Leray-Serre Spectral Sequence
127(4)
Spectral Sequence of a Filtration
131(4)
Convergence
135(6)
Spectral Sequences of a Double Complex
141(4)
Hyperhomology
145(5)
Grothendieck Spectral Sequences
150(3)
Exact Couples
153(7)
Group Homology and Cohomology
160(56)
Definitions and First Properties
160(7)
Cyclic and Free Groups
167(4)
Shapiro's Lemma
171(3)
Crossed Homomorphisms and H1
174(3)
The Bar Resolution
177(5)
Factor Sets and H2
182(7)
Restriction, Corestriction, Inflation, and Transfer
189(6)
The Spectral Sequence
195(3)
Universal Central Extensions
198(5)
Covering Spaces in Topology
203(3)
Galois Cohomology and Profinite Groups
206(10)
Lie Algebra Homology and Cohomology
216(38)
Lie Algebras
216(3)
g-Modules
219(4)
Universal Enveloping Algebras
223(5)
H1 and H1
228(4)
The Hochschild-Serre Spectral Sequence
232(2)
H2 and Extensions
234(4)
The Chevalley-Eilenberg Complex
238(4)
Semisimple Lie Algebras
242(6)
Universal Central Extensions
248(6)
Simplicial Methods in Homological Algebra
254(46)
Simplicial Objects
254(5)
Operations on Simplicial Objects
259(4)
Simplicial Homotopy Groups
263(7)
The Dold-Kan Correspondence
270(5)
The Eilenberg-Zilber Theorem
275(3)
Canonical Resolutions
278(8)
Cotriple Homology
286(8)
Andre-Quillen Homology and Cohomology
294(6)
Hochschild and Cyclic Homology
300(69)
Hochschild Homology and Cohomology of Algebras
300(6)
Derivations, Differentials, and Separable Algebras
306(5)
H2, Extensions, and Smooth Algebras
311(8)
Hochschild Products
319(7)
Morita Invariance
326(4)
Cyclic Homology
330(8)
Group Rings
338(6)
Mixed Complexes
344(10)
Graded Algebras
354(8)
Lie Algebras of Matrices
362(7)
The Derived Category
369(48)
The Category K(A)
369(4)
Triangulated Categories
373(6)
Localization and the Calculus of Fractions
379(6)
The Derived Category
385(5)
Derived Functors
390(4)
The Total Tensor Product
394(4)
Ext and RHom
398(4)
Replacing Spectral Sequences
402(5)
The Topological Derived Category
407(10)
Category Theory Language 417(15)
Categories
417(4)
Functors
421(2)
Natural Transformations
423(1)
Abelian Categories
424(3)
Limits and Colimits
427(2)
Adjoint Functors
429(3)
References 432(3)
Index 435