Atnaujinkite slapukų nuostatas

Introduction to Infrared and Electro-Optical Systems, Second Edition Unabridged edition [Kietas viršelis]

  • Formatas: Hardback, 488 pages
  • Išleidimo metai: 30-Aug-2012
  • Leidėjas: Artech House Publishers
  • ISBN-10: 1608071006
  • ISBN-13: 9781608071005
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 488 pages
  • Išleidimo metai: 30-Aug-2012
  • Leidėjas: Artech House Publishers
  • ISBN-10: 1608071006
  • ISBN-13: 9781608071005
Kitos knygos pagal šią temą:
Driggers, Jonathan M. Nichols (both optical sciences, US Naval Research Laboratory), and Melvin H. Friedman (night vision and electronic sensors, US Army) introduce infrared and electro-optical imaging systems, emphasizing analyzing and designing military imaging systems. Students should have completed an undergraduate electrical engineering degree. No date is cited for the first edition. The second includes the new ability of systems to be characterized by a system contrast threshold function just like the human eye, and a new target task performance metric that can provide more accurate performance predictions than the previous limiting frequency methods. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)
Preface xiii
Chapter 1 Introduction
1(14)
1.1 Introduction to Imaging
2(1)
1.2 Infrared and EO Systems
3(1)
1.3 Wavelength Dependencies
4(2)
1.4 Typical EO Scenario
6(1)
1.5 Typical Infrared Scenario
7(1)
1.6 Analytical Parameters
8(1)
1.7 Sensitivity and Resolution
9(1)
1.8 Linear Systems Approach
10(2)
1.9 Summary
12(1)
1.10 Guide to the References
13(2)
References
13(2)
Chapter 2 Mathematics
15(30)
2.1 Complex Functions
15(2)
2.2 Common One-Dimensional Functions
17(3)
2.3 Two-Dimensional Functions
20(2)
2.4 Convolution and Correlation
22(5)
2.5 The Fourier Transform
27(2)
2.6 Properties of the Fourier Transform
29(1)
2.7 Transform Pairs
30(3)
2.8 Probability
33(4)
2.9 Important Examples
37(2)
2.10 Guide to the References
39(1)
2.11 Exercises
39(6)
References
42(1)
Software
42(3)
Chapter 3 Linear Shift-Invariant Systems
45(28)
3.1 Linear Systems
47(1)
3.2 Shift Invariance
48(1)
3.3 Basics of LSI Systems
48(2)
3.4 Impulse Response
50(5)
3.5 Transfer Function
55(3)
3.6 System PSF and MTF Versus Component PSF and MTF
58(1)
3.7 Spatial Sampling
59(3)
3.8 Spatial Sampling and Resolution
62(2)
3.9 Sampled Imaging Systems
64(5)
3.10 Guide to the References
69(1)
3.11 Exercises
69(4)
References
71(2)
Chapter 4 Diffraction
73(44)
4.1 Electromagnetic Waves
74(3)
4.2 Coherence
77(5)
4.3 Fresnel and Fraunhofer Diffraction from an Aperture
82(5)
4.4 Fraunhofer Diffraction from a Thin Lens
87(1)
4.5 Thin Lens Optical System Diffraction PSF
88(3)
4.6 Thin Lens Diffraction MTF
91(5)
4.7 Calculating Diffraction MTF with Pencil and Paper
96(1)
4.8 Programs for Calculating Incoherent Diffraction MTF
97(11)
4.9 Applications of Diffraction Theory
108(5)
4.10 Exercises
113(4)
References
116(1)
Chapter 5 Sources of Radiation
117(46)
5.1 Radiometry and Photometry
118(7)
5.2 Infrared Targets and Backgrounds
125(10)
5.3 Electro-Optical Targets and Backgrounds
135(7)
5.4 Other Sensitivity Considerations
142(1)
5.5 Target and Background Spatial Characteristics
143(9)
5.6 Typical Midwave and Longwave Contrasts and Solar Effects
152(7)
5.7 Exercises
159(4)
References
161(2)
Chapter 6 Atmospherics
163(26)
6.1 Atmospheric Components and Structure
163(3)
6.2 Atmospheric Transmission
166(2)
6.3 Absorption
168(2)
6.4 Scattering
170(3)
6.5 Path Radiance
173(1)
6.6 Turbulence
173(4)
6.7 Atmospheric MTF
177(2)
6.8 Models
179(2)
6.9 Model Discussion
181(2)
6.10 Some Practical Considerations
183(3)
6.11 Exercises
186(3)
References
186(3)
Chapter 7 Optics
189(76)
7.1 Light Representation and the Optical Path Length
189(2)
7.2 Reflection and Snell's Law of Refraction
191(2)
7.3 The Thin Lens Ray-Tracing Rules and Gauss's Equation
193(10)
7.4 Spherical Mirrors
203(2)
7.5 Modeling the Thick Lens
205(3)
7.6 Vergence
208(5)
7.7 Multiple-Lens Systems
213(2)
7.8 Field of View
215(3)
7.9 Resolution
218(3)
7.10 Aperture Stop, Pupils, and Rays
221(3)
7.11 The f-Number and Numerical Aperture
224(12)
7.12 Telescopes and Angular Magnification
236(9)
7.13 Modulation Transfer Function
245(5)
7.14 Aberrations
250(2)
7.15 Optical Materials
252(1)
7.16 Cold Stop and Cold Shield
253(1)
7.17 A Typical Optical System
253(3)
7.18 Diffraction Blur
256(2)
7.19 Guide To the References
258(1)
7.20 Exercises
259(6)
References
262(3)
Chapter 8 Detectors
265(44)
8.1 Types of Detectors
265(2)
8.2 Photon Detectors
267(5)
8.3 Thermal Detectors
272(3)
8.4 Charge-Coupled Devices
275(1)
8.5 Detector Responsivity
276(2)
8.6 Detector Sensitivity
278(7)
8.7 Detector Angular Subtense
285(2)
8.8 Scanning Configurations and Implementations
287(5)
8.9 Detector Transfer Functions
292(4)
8.10 Infrared Detectors
296(2)
8.11 Electro-Optical Systems
298(1)
8.12 Noise
299(1)
8.13 Basic Background-Limited Infrared Photodetection
300(1)
8.14 New Infrared Detector Arrays
301(4)
8.15 Exercises
305(4)
References
306(3)
Chapter 9 Electronics
309(24)
9.1 Detector Circuits
309(4)
9.2 Conversion of Spatial and Temporal Frequencies
313(2)
9.3 Electronics Transfer Function
315(3)
9.4 Noise
318(4)
9.5 MTF Boost Filter
322(1)
9.6 EO Mux MTF
322(2)
9.7 Digital Filter MTF
324(1)
9.8 CCDs
325(1)
9.9 Uniformity Correction or "NUC"
326(2)
9.10 Readout Integrated Circuits
328(3)
9.11 Exercises
331(2)
References
332(1)
Chapter 10 Image Processing
333(22)
10.1 Basics of Sampling Theory
333(3)
10.2 Applications of Image Filtering
336(3)
10.3 Super-Resolution Image Reconstruction
339(7)
10.4 Image Fusion
346(4)
10.5 Summary
350(5)
References
351(4)
Chapter 11 Displays, Human Perception, and Automatic Target Recognizers
355(18)
11.1 Displays
355(2)
11.2 Cathode-Ray Tubes
357(2)
11.3 Light-Emitting Diodes
359(2)
11.4 Liquid-Crystal Displays
361(2)
11.5 Plasma Displays
363(1)
11.6 Sampling and Display Processing
363(2)
11.7 Human Perception and the Human Eye
365(2)
11.8 Modulation Transfer Function of the Eye
367(2)
11.9 Contrast Threshold Function of the Eye
369(1)
11.10 Automatic Target Recognition
369(2)
11.11 Exercises
371(2)
References
372(1)
Chapter 12 Historical Performance Models
373(24)
12.1 Introduction
373(1)
12.2 Johnson Model Fundamentals
374(2)
12.3 The MRT Model
376(2)
12.4 The First FLIRS and Models
378(3)
12.5 Model Improvements for Resolution and Noise
381(4)
12.6 Incorporating Eye Contrast Limitations
385(2)
12.7 Model Improvement to Add Sampling
387(3)
12.8 Other Improvements Prior to the Target Task Performance Metric
390(1)
12.9 The TRM3 Model
391(1)
12.10 Triangle Orientation Discrimination
392(1)
12.11 Imager Modeling, Measurement, and Field Performance
393(1)
12.12 Exercises
393(4)
References
394(3)
Chapter 13 Contrast Threshold and TTP Metric
397(42)
13.1 Contrast Threshold Function of the Naked Eye
397(4)
13.2 Contrast Threshold Function for the Eye-Display System
401(9)
13.3 Validation of Eye-Display Contrast Threshold Model
410(11)
13.4 Eye-Display Contrast Threshold Model
421(5)
13.5 TTP Metric and Range Performance Modeling
426(5)
13.6 Guide to the References
431(1)
13.7 Exercises
431(8)
Appendix 13A Direct Calculations of CTFeye-disph
433(3)
References
436(3)
Chapter 14 Infrared and EO System Performance and Target Acquisition
439(54)
14.1 Sensitivity and Resolution
442(1)
14.2 Noise Equivalent Temperature Difference
443(6)
14.3 EO Noise and Noise Equivalent Irradiance
449(6)
14.4 Three-Dimensional Noise
455(2)
14.5 Modulation Transfer Function
457(2)
14.6 Minimum Resolvable Temperature Difference (Including 2D MRT)
459(11)
14.7 Target Acquisition with Limiting Frequency (Johnson's N50)
470(5)
14.8 System Contrast Threshold Function
475(5)
14.9 Target Acquisition with the Target Task Performance Metric (and Vollmerhausen's V50)
480(2)
14.10 Target Sets
482(2)
14.11 Classic ISR, NIIRS, and General Image Quality
484(5)
14.12 The Newest Military Imaging Mode: Persistent Surveillance
489(2)
14.13 Exercises
491(2)
References
491(2)
Chapter 15 Search
493(52)
15.1 Problem Definition
494(1)
15.2 Introduction to Search Theory
495(4)
15.3 Technique for Estimating Search Parameters and Their Uncertainties
499(4)
15.4 Search Parameters and NV-IPM
503(2)
15.5 Time-Limited Search
505(5)
15.6 Field of Regard Search
510(4)
15.7 Multiple Observers, Single Sensor, Unlimited Time, and Shared Knowledge
514(3)
15.8 Independent Search with Two Sensors, Unlimited Time, and Shared Knowledge
517(1)
15.9 Time-Dependent Search Parameters Search Model
518(9)
15.10 Other Work
527(3)
15.11 Guide to the References
530(1)
15.12 Exercises
530(15)
Appendix 15 A Time-Unlimited Field of Regard Search
531(3)
Appendix 15B Detection Times And Probabilities With Shared Information
534(6)
Appendix 15C Mathematica Search Code for TDSP Search Model
540(2)
References
542(3)
Chapter 16 Laboratory Measurements of Infrared Imaging System Performance
545(12)
16.1 Sensitivity
545(4)
16.2 Resolution
549(2)
16.3 Human Performance: Minimum Resolvable Temperature Difference
551(2)
16.4 Dynamic Minimum Resolvable Temperature Difference
553(4)
References
555(2)
List of Symbols 557(2)
List of Acronyms 559(2)
Table of Abbreviations and Concepts 561(2)
Table of Operators and Mathematical Functions 563(2)
Index 565
Ronald Driggers is the superintendent in the Optical Sciences Division of the U.S. Naval Research Laboratory. He was previously a senior engineer at U.S. Army Night Vision and Electronic Sensors Directorate where he provided electro-optical and infrared research on performance modeling. Dr. Driggers received his Ph.D., M.S., and B.S. from the University of Memphis. Melvin H. Friedman works for the U.S. Army Night Vision and Electronic Sensors Directorate.