Atnaujinkite slapukų nuostatas

Introduction to Infrared and Electro-Optical Systems, Third Edition 3rd Unabridged edition [Kietas viršelis]

  • Formatas: Hardback, 951 pages, aukštis x plotis: 254x178 mm
  • Išleidimo metai: 31-Aug-2022
  • Leidėjas: Artech House Publishers
  • ISBN-10: 1630818321
  • ISBN-13: 9781630818326
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 951 pages, aukštis x plotis: 254x178 mm
  • Išleidimo metai: 31-Aug-2022
  • Leidėjas: Artech House Publishers
  • ISBN-10: 1630818321
  • ISBN-13: 9781630818326
Kitos knygos pagal šią temą:
This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model.

 

The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination.

 

The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers.

 

With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.
Preface xix
Acknowledgments xxi
Chapter 1 Introduction
1(16)
1.1 Introduction to Imaging
2(1)
1.2 Infrared and EO Systems
3(1)
1.3 Wavelength Dependencies
4(2)
1.4 Typical EO Scenario
6(1)
1.5 Typical Infrared Scenario
7(2)
1.6 Analytical Parameters
9(1)
1.7 Sensitivity and Resolution
10(1)
1.8 Linear Systems Approach
11(1)
1.9 Summary
12(1)
1.10 Guide to the References
13(4)
References
14(3)
Chapter 2 Mathematics
17(32)
2.1 Complex Functions
17(2)
2.2 Common One-Dimensional Functions
19(3)
2.3 The 2-D Functions
22(2)
2.4 Convolution and Correlation
24(5)
2.5 The Fourier Transform
29(2)
2.6 Fourier Transform Properties
31(2)
2.7 Transform Pairs and Delta Function Properties
33(1)
2.8 Probability
33(7)
2.9 Important Examples
40(4)
Example 2.1
41(1)
Example 2.2
41(1)
Example 2.3
42(1)
Example 2.4
42(1)
Example 2.5
42(2)
2.10 Guide to the References
44(5)
Problems
45(2)
References
47(1)
Selected Bibliography
48(1)
Software
48(1)
Chapter 3 Linear Shift-Invariant Systems
49(28)
3.1 Linear Systems
51(1)
3.2 Shift Invariance
52(1)
3.3 Basics of LSI Systems
52(2)
3.4 Impulse Response
54(6)
3.5 Transfer Function
60(2)
3.6 System PSF and MTF Versus Component PSF and MTF
62(2)
3.7 Spatial Sampling
64(2)
3.8 Spatial Sampling and Resolution
66(2)
3.9 Sampled Imaging Systems
68(5)
3.10 Guide to the References
73(4)
Problems
73(2)
References
75(1)
Selected Bibliography
76(1)
Chapter 4 Diffraction
77(48)
4.1 Electromagnetic Waves
78(3)
4.2 Coherence
81(6)
Example 4.1
84(3)
4.3 Fresnel and Fraunhofer Diffraction from an Aperture
87(4)
4.3.1 Fresnel Diffraction
88(1)
4.3.2 Fraunhofer Diffraction
89(1)
Example 4.2
90(1)
4.4 Fraunhofer Diffraction from a Thin Lens
91(2)
4.5 Thin Lens Optical System Diffraction PSF
93(3)
4.6 Thin Lens Diffraction MTF
96(5)
4.6.1 Modulation and MTF
96(2)
4.6.2 Incoherent Diffraction MTF
98(2)
4.6.3 Coherent Diffraction MTF
100(1)
4.7 Calculation of Diffraction MTF
101(1)
4.7.1 Circular Pupil: Coherent MTF
101(1)
4.7.2 Circular Pupil: Incoherent MTF
101(1)
4.8 Programs for Calculating Incoherent Diffraction MTF
102(11)
Example 4.3
107(1)
Example 4.4
108(3)
Example 4.5
111(1)
Example 4.6
112(1)
4.9 Applications of Diffraction Theory
113(4)
4.9.1 Frequency Analysis of Optical Systems
113(1)
4.9.2 Application to Geometric Optics
113(1)
4.9.3 PSF of Distributed Aperture
113(1)
4.9.4 Optical Image Processing
114(1)
4.9.5 Stellar Interferometry
114(1)
4.9.6 Apodization
114(1)
4.9.7 Detector MTF from the Fraunhofer Diffraction Pattern
115(1)
Example 4.7
116(1)
4.10 Light Goes Around Corners: The Poisson Spot
117(8)
Problems
119(3)
References
122(3)
Chapter 5 Sources of Radiation
125(48)
5.1 Radiometry and Photometry
126(8)
5.1.1 Radiometric Units
128(3)
Example 5.1
131(1)
Example 5.2
131(1)
Example 5.3
131(1)
5.1.2 Photometric Units
132(2)
5.2 Infrared Targets and Backgrounds
134(11)
5.2.1 Blackbody Radiation
134(2)
Example 5.4
136(1)
Example 5.5
136(2)
5.2.2 Emissivity
138(2)
5.2.3 Equivalent Differential Temperature (Delta T)
140(2)
5.2.4 Apparent Differential Temperature (Apparent Delta T)
142(3)
5.3 EO Targets and Backgrounds
145(6)
5.3.1 External Sources
145(4)
5.3.2 Contrast
149(1)
Example 5.6
150(1)
5.4 Other Sensitivity Considerations
151(2)
5.4.1 Bidirectional Reflectance Distribution Function
151(1)
5.4.2 Color Considerations
152(1)
5.5 Target and Background Spatial Characteristics
153(9)
5.5.1 Bar Target Representation of Targets
154(2)
5.5.2 Target Delta T and Characteristic Dimension
156(1)
5.5.3 Summary of Target Characteristics
157(3)
5.5.4 Clutter
160(1)
5.5.5 Simulation of Target Characteristics
161(1)
5.6 Typical Mid-Wave and Long-Wave Contrasts and Solar Effects
162(11)
Problems
169(2)
Design Study Exercise (with Background)
171(1)
References
171(1)
Selected Bibliography
172(1)
Chapter 6 Atmospherics
173(28)
6.1 Atmospheric Components and Structure
174(2)
6.2 Atmospheric Transmission
176(2)
6.3 Absorption
178(3)
6.4 Scattering
181(2)
6.5 Path Radiance
183(1)
6.6 Turbulence
184(3)
6.7 Atmospheric Modulation Transfer Function
187(2)
6.8 Models and Tools
189(3)
6.9 Model Background Discussion
192(2)
6.10 Some Practical Considerations
194(7)
Exercises
197(1)
Design Study Exercise (Continued)
198(1)
References
199(2)
Chapter 7 Optics
201(76)
7.1 Light Representation and the Optical Path Length
202(1)
7.2 Reflection and Snell's Law of Refraction
203(2)
7.3 The Thin Lens Ray-Tracing Rules and Gauss's Equation
205(11)
7.4 Spherical Mirrors
216(1)
7.5 Modeling the Thick Lens
217(4)
7.6 Vergence
221(4)
Example 7.1
222(1)
Example 7.2
222(2)
Example 7.3
224(1)
7.7 Multiple-Lens Systems
225(1)
7.8 FOV
226(4)
7.9 Resolution
230(3)
7.10 Aperture Stop, Pupils, and Rays
233(4)
7.11 Number and Numerical Aperture
237(10)
7.12 Telescopes and Angular Magnification
247(10)
7.13 MTF
257(5)
Example 7.4
260(2)
7.14 Aberrations
262(2)
7.15 Optical Materials
264(1)
7.16 Cold Stop and Cold Shield
265(1)
7.17 A Typical Optical System
265(3)
7.18 Diffraction Blur
268(9)
Exercises
271(3)
Design Study Exercise (Continued)
274(1)
Guide to the References
275(1)
References
275(2)
Chapter 8 Detectors
277(66)
8.1 Types of Detectors
278(10)
8.1.1 Photon Detectors
279(1)
8.1.2 Photoconductors
280(1)
Example 8.1
281(1)
8.1.3 Photovoltaic
282(2)
8.1.4 Photoemissive
284(1)
8.1.5 Thermal Detectors
285(1)
8.1.6 Bolometers
285(2)
Example 8.2
287(1)
8.1.7 Pyroelectric Detectors
287(1)
8.2 CCD and ROIC
288(5)
8.2.1 CCD
289(1)
8.2.2 Multiplexed Analog Readout
289(3)
8.2.3 Column ADC ROIC or D-ROIC
292(1)
8.3 Detector Sensitivity Analysis
293(22)
8.3.1 Quantum Efficiency
293(4)
8.3.2 Responsivity
297(2)
Example 8.3
299(1)
8.3.3 Sensitivity
299(6)
Example 8.4
305(2)
8.3.4 Detector Angular Subtense
307(1)
Example 8.5
307(1)
8.3.5 FPA and Detector Noise (Including Detector 1/f Noise)
308(1)
8.3.6 Dark Current and Rule '07
308(1)
8.3.7 1/f Noise
309(2)
8.3.8 Photon Shot Noise
311(1)
8.3.9 FPA and ROIC Noise (Including Fixed Pattern Noise) in Staring Systems
311(2)
8.3.10 BLIP
313(2)
8.4 EO Systems: Staring and Scanning Configurations
315(5)
8.4.1 Raster Scan Systems
316(1)
8.4.2 Linear Scan and TDI
317(2)
8.4.3 Staring Systems: Focal Plane Arrays
319(1)
8.5 Detector Transfer Functions
320(5)
Example 8.6
324(1)
8.6 EO Detectors: Materials and Technology
325(6)
8.6.1 MWIR and LWIR Photon Detectors
326(2)
8.6.2 Far Infrared: VLWIR
328(1)
8.6.3 Uncooled Bolometer
328(1)
8.6.4 Visible and NIR
329(2)
8.7 New and Emerging Infrared Detector Technology
331(12)
8.7.1 Ultra-Large-Format Arrays and Small Pitch
331(1)
8.7.2 Dual-Band Detectors (Third Generation)
332(1)
8.7.3 Direct Bond Hybridization
333(1)
8.7.4 Advanced ROIC Technology and Digital Pixel
334(2)
8.7.5 Next Generation Imagers
336(1)
8.7.6 Avalanche Photodiodes, Laser Range Gating, and Active and Passive Detectors
336(2)
Problems
338(1)
Design Study Exercise (Continued)
339(1)
References
340(3)
Chapter 9 Electronics
343(28)
9.1 Detector Circuits
343(5)
Example 9.1
345(3)
9.2 Conversion of Spatial and Temporal Frequencies
348(2)
Example 9.2
349(1)
9.3 Electronics Transfer Function
350(2)
9.4 Noise
352(6)
9.4.1 Johnson Noise
353(1)
Example 9.3
353(1)
Example 9.4
354(1)
9.4.2 1//Noise
355(1)
9.4.3 Shot Noise
355(3)
9.5 MTF Boost Filter
358(1)
9.6 Digital Filter MTF
358(2)
9.7 CCDs
360(1)
9.8 Uniformity Correction or NUC
361(3)
9.9 Design and Construction of Camera Electronics
364(7)
Problems
367(2)
Design Study Exercise (Continued)
369(1)
References
370(1)
Chapter 10 Image Processing
371(28)
10.1 Basics of Sampling Theory
371(3)
10.2 Applications of Image Filtering
374(3)
10.2.1 Localized Contrast Enhancement
374(2)
10.2.2 Boost Filtering
376(1)
10.2.3 Sensor Design Considerations
377(1)
10.3 Super-Resolution Image Reconstruction
377(8)
10.3.1 Image Acquisition: Microdither Scanner Versus Natural Jitter
379(1)
10.3.2 Subpixel Shift Estimation
379(2)
10.3.3 Image Reconstruction
381(1)
10.3.4 Example and Performance Estimates
382(3)
10.4 Image Fusion
385(4)
10.4.1 Fusion Algorithms
385(4)
10.5 Scene-Based NUC
389(3)
10.6 Deep Learning
392(2)
10.6.1 Super-Resolution
393(1)
10.6.2 Contrast Enhancement
393(1)
10.6.3 Image Fusion
393(1)
10.6.4 Scene-Based NUC
394(1)
10.7 Summary
394(5)
References
394(5)
Chapter 11 Displays, Human Perception, and Automatic Target Recognizers
399(20)
11.1 Displays
400(1)
Example 11.1
401(1)
11.2 CRTs
401(3)
Example 11.2
403(1)
11.2.1 CRT Example Results
403(1)
11.3 LEDs
404(2)
11.4 LCDs
406(1)
11.5 Plasma Displays
407(1)
11.6 Emerging Display Technologies
407(1)
11.7 Sampling and Display Processing
408(2)
11.8 Human Perception and the Human Eye
410(2)
11.9 MTF of the Eye
412(1)
Example 11.3
413(1)
11.10 CTF of the Eye
413(1)
11.11 Automatic Target Recognition
414(5)
Problems
416(1)
References
417(2)
Chapter 12 Historical Performance Models
419(22)
12.1 Introduction
419(1)
12.2 Johnson Model Fundamentals
420(2)
12.3 The MRT Model
422(2)
12.4 The First FLIRS and Models
424(3)
12.5 Model Improvements for Resolution and Noise
427(3)
12.6 Incorporating Eye Contrast Limitations
430(2)
12.7 Model Improvement to Add Sampling
432(3)
12.8 Other Improvements Prior to the TTP Metric
435(1)
12.9 The TRM3 Model
436(1)
12.10 Triangle Orientation Discrimination (TOD)
437(1)
12.11 Imager Modeling, Measurement, and Field Performance
438(3)
Problems
439(1)
References
439(2)
Chapter 13 Contrast Threshold and TTP Metric
441(42)
13.1 CTF of the Naked Eye
441(4)
13.2 CTF for the Eye-Display System
445(9)
13.3 Validation of Eye-Display CTF
454(11)
13.4 Eye-Display Contrast Threshold Model
465(6)
13.4.1 Eye-Display Contrast Threshold Model
467(1)
13.4.2 Define Functions
467(2)
13.4.3 Define Input Parameters
469(1)
13.4.4 Run the Program
470(1)
13.4.5 Comparison with Existing Models
471(1)
13.5 TTP Metric and Range Performance Modeling
471(5)
13.6 Guide to the References
476(7)
Problems
476(2)
References
478(1)
Appendix 13A
479(1)
13A.1 Direct Calculation of CTFeye--disp,h
479(4)
Chapter 14 EO and Infrared System Performance and Target Acquisition
483(72)
14.1 Sensitivity and Resolution
486(1)
14.2 NETD
487(6)
Example 14.1 Scanning System
492(1)
Example 14.2 Staring System
493(1)
14.3 EO Noise and Noise Equivalent Irradiance
493(3)
14.3.1 Noise Equivalent Irradiance
495(1)
14.4 3-D Noise
496(2)
14.5 MTF
498(3)
14.6 MRTD (Including 2-D MRT)
501(10)
Example 14.3 Second-Generation FLIR
505(5)
14.6.1 2-D MRT
510(1)
14.7 Target Acquisition with Limiting Frequency (Johnson's N50)
511(5)
14.8 System CTF
516(6)
Example 14.4
519(3)
14.9 Target Acquisition with the Target Task Performance (TTP) Metric (and Vollmerhausen's V50)
522(1)
14.10 Target Sets
523(2)
14.11 Classic ISR, NIIRS, and General Image Quality
525(5)
14.11.1 NIIRS
526(1)
14.11.2 GIQE Model
526(3)
Example 14.5
529(1)
14.12 The Performance Benefits of Dual-Band Infrared Imagers
530(12)
14.12.1 Dual-Band Imagers
530(1)
14.12.2 Long-Range Target Detection and Identification
531(2)
14.12.3 Imaging with Hot Targets in the FOV
533(1)
14.12.4 Cold-Weather Performance
534(1)
14.12.5 Imaging Through Turbulence
535(1)
14.12.6 Imaging Through Fog-Oil Smoke
536(1)
14.12.7 Target Contrast (Up Close)
536(1)
14.12.8 ATR Performance
537(1)
14.12.9 Motion Blur and Integration Time
537(2)
14.12.10 Target Spectral Exploitation
539(1)
14.12.11 Signal and Image Processing: Boost, Local Area Contrast Enhancement
539(1)
14.12.12 Imaging Through Fog, High Humidity, Rain, Haze, Smoke, and Dust
540(1)
14.12.13 Discussion
541(1)
14.13 Small Detector Infrared Systems
542(8)
14.13.1 Small Detector Infrared System Fundamentals
543(2)
14.13.2 Choosing Detector Array Dimensions for SPHD Sensors
545(1)
14.13.3 Practical Benefits of LWIR SPHD Sensors
546(1)
14.13.4 MWIR SPHD Sensors
546(2)
14.13.5 MWIR SPFF Sensors
548(2)
14.13.6 LWIR SPFF Sensors
550(1)
14.13.7 Summary
550(1)
14.14 Persistent Surveillance
550(5)
Problems
552(1)
References
552(3)
Chapter 15 Simplified Target Acquisition Model
555(14)
15.1 Introduction to the Simple Model
555(2)
15.2 NVIPM
557(2)
15.3 Simple Model Based on FX/d
559(2)
15.4 Sensors
561(1)
15.5 Prediction of R50
561(3)
15.6 Probability as a Function of Range
564(2)
15.7 Characteristic Dimension and V50
566(1)
15.8 Discussion
566(3)
References
567(1)
Selected Bibliography
568(1)
Chapter 16 Pilotage
569(10)
16.1 Introduction to Pilotage
569(2)
16.2 TTP with Scene Contrast
571(1)
16.3 Vollmerhausen and Bui
572(3)
16.4 Scene Contrast Temperature
575(1)
16.5 Discussion
575(2)
16.6 Conclusion
577(2)
Acknowledgments
577(1)
References
577(1)
Selected Bibliography
578(1)
Chapter 17 Infrared Search and Track
579(30)
17.1 Introduction to IRST
579(1)
17.2 IRST Systems
580(2)
17.3 Signal Radiometry
582(2)
17.4 PVF
584(3)
17.5 Noise and Integration Time
587(2)
17.6 NEI
589(3)
17.7 Targets
592(4)
17.7.1 Graybody Target
592(1)
17.7.2 Differential Radiance or Intensity
593(1)
17.7.3 High-Speed Targets
594(1)
17.7.4 Broadband Intensity Models/Measurements
594(2)
17.8 Atmospheric Background and Path Radiance
596(2)
17.9 Broadband Example
598(1)
17.10 Spectral Example
599(1)
17.11 Optimization of System Performance
600(3)
17.12 Scanned Versus Staring Systems
603(2)
17.13 Discussion
605(1)
17.14 Conclusions
606(3)
References
607(2)
Chapter 18 Search
609(54)
18.1 Problem Definition
610(1)
18.2 Introduction to Search Theory
611(5)
18.3 Technique for Estimating Search Parameters and Their Uncertainties
616(4)
Example 18.1
616(4)
18.4 Search Parameters and NVIPM
620(4)
18.5 Time-Limited Search
624(4)
18.6 FOR Search
628(3)
18.7 Multiple Observers, Single Sensor, Unlimited Time, and Shared Knowledge
631(4)
18.8 Independent Search with Two Sensors, Unlimited Time, and Shared Knowledge
635(1)
18.9 Time-Dependent Search Parameters Search Model
636(10)
18.10 Other Work
646(2)
18.10.1 Neoclassical Search Model
646(2)
18.11 Guide to References
648(15)
Problems
648(1)
References
649(1)
Selected Bibliography
650(1)
Appendix 18A Time-Unlimited FOR Search
651(3)
Appendix 18B Detection Time and Probabilities with Shared Information
654(1)
18B.1 Useful Mathematical Result
654(1)
18B.2 The Mean Time for the First Observer to Detect a Target Given in Observers and P∞
655(1)
18B.3 The Mean Time to Detect a Target with Two Observers Using Two Sensors
656(3)
18B.4 PDF for Detection Time with Two Observers Using Two Sensors
659(1)
Appendix 18C Mathematica Search Code for TDSP Search Model
660(3)
Chapter 19 Laboratory Measurements of Infrared Imaging System Performance
663(24)
19.1 Sensitivity
663(4)
19.2 Resolution
667(3)
19.3 Human Performance: MRTD
670(1)
19.4 DMRT
671(2)
19.5 Image Temporal Response and Stability/Drift
673(2)
19.6 Operability Considerations
675(1)
19.7 EO Test Instrumentation
676(1)
19.8 Environmental Testing
677(10)
References
679(2)
List of Symbols
681(2)
List of Acronyms
683(4)
About the Authors 687(4)
Index 691