Atnaujinkite slapukų nuostatas

El. knyga: Introduction of Intelligent Machine Fault Diagnosis and Prognosis

  • Formatas: 361 pages
  • Išleidimo metai: 01-Jan-2018
  • Leidėjas: Nova Science Publishers Inc
  • ISBN-13: 9781614701118
  • Formatas: 361 pages
  • Išleidimo metai: 01-Jan-2018
  • Leidėjas: Nova Science Publishers Inc
  • ISBN-13: 9781614701118

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Condition monitoring, fault diagnosis and prognosis of machinery have received considerable attention in recent years and they are increasingly becoming important in industry because of the need to increase reliability and decrease possible loss of production due to the fault of equipments. Early fault detection, diagnosis and prognosis can increase equipment availability and performance, reduce consequential damage, prolong machine life and reduce spare parts inventories and break down maintenance. With the development of the artificial intelligence techniques, many intelligent systems have been employed to assist the maintenance management task to correctly interpret the fault data.The book is very easy to study; even if the reader is a beginner in the fault diagnosis area, they do do not need special prerequisite knowledge to understand the contents of this book. The book is equipped with software under MATLAB and offers many examples which are related to fault diagnosis processes.It will be very useful to readers who want to study feature-based intelligent machine fault diagnosis and prognosis techniques. The book is dedicated to graduate students of mechanical and electrical engineering, computer science and for practicing engineers.
Preface vii
Acknowledgments 1(2)
About the Author 3(2)
Chapter 1 Introduction
5(22)
Chapter 2 Data Acquisition, Processing and Analysis
27(50)
Chapter 3 Feature Extraction and Clustering
77(48)
Chapter 4 Feature Selection
125(38)
Chapter 5 Fault Classification Algorithms
163(98)
Chapter 6 Decision Fusion Algorithms
261(38)
Chapter 7 Fault Prognosis Algorithms
299(36)
Appendix 335(4)
Index 339