|
|
1 | (20) |
|
1.1 A Non-trivial Example Problem: The Multiplexer |
|
|
1 | (3) |
|
|
4 | (3) |
|
|
4 | (1) |
|
1.2.2 Rules, Matching, and Classifiers |
|
|
4 | (2) |
|
1.2.3 Discovery Component - Evolutionary Computation |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (3) |
|
|
10 | (3) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.5 Code Exercises (eLCS) |
|
|
13 | (8) |
|
|
21 | (20) |
|
|
22 | (2) |
|
2.1.1 Modeling with a Ruleset |
|
|
23 | (1) |
|
|
24 | (6) |
|
|
24 | (3) |
|
2.2.2 Representation and Alphabet |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (5) |
|
2.3.1 Interaction with Problems |
|
|
30 | (3) |
|
2.3.2 Cooperation of Classifiers |
|
|
33 | (1) |
|
2.3.3 Competition Between Classifiers |
|
|
34 | (1) |
|
|
35 | (4) |
|
|
35 | (2) |
|
2.4.2 Applications Overview |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (1) |
|
3 Functional Cycle Components |
|
|
41 | (30) |
|
3.1 Evolutionary Computation and LCSs |
|
|
42 | (2) |
|
3.2 Initial Considerations |
|
|
44 | (1) |
|
3.3 Basic Alphabets for Rule Representation |
|
|
45 | (6) |
|
3.3.1 Encoding for Binary Alphabets |
|
|
45 | (3) |
|
|
48 | (3) |
|
|
51 | (1) |
|
|
52 | (1) |
|
3.6 Form a Correct Set or Select an Action |
|
|
53 | (4) |
|
3.6.1 Explore vs. Exploit |
|
|
54 | (2) |
|
|
56 | (1) |
|
3.7 Performing the Action |
|
|
57 | (1) |
|
|
58 | (1) |
|
3.8.1 Numerosity of Rules |
|
|
58 | (1) |
|
|
59 | (1) |
|
3.9 Selection for Rule Discovery |
|
|
59 | (3) |
|
3.9.1 Parent Selection Methods |
|
|
60 | (2) |
|
|
62 | (6) |
|
3.10.1 When to Invoke Rule Discovery |
|
|
63 | (1) |
|
3.10.2 Identifying Building Blocks of Knowledge |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
3.10.5 Initialising Offspring Classifiers |
|
|
67 | (1) |
|
3.10.6 Other Rule Discovery |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (32) |
|
|
71 | (3) |
|
4.2 Michigan-Style vs. Pittsburgh-Style LCSs |
|
|
74 | (2) |
|
4.3 Michigan-Style Approaches |
|
|
76 | (11) |
|
4.3.1 Michigan-Style Supervised Learning (UCS) |
|
|
76 | (2) |
|
4.3.2 Updates with Time-Weighted Recency Averages |
|
|
78 | (1) |
|
4.3.3 Michigan-Style Reinforcement Learning (e.g. XCS) |
|
|
79 | (8) |
|
4.4 Pittsburgh-Style Approaches |
|
|
87 | (2) |
|
|
87 | (1) |
|
4.4.2 GABIL, GALE, and A-PLUS |
|
|
88 | (1) |
|
4.5 Strength- vs. Accuracy-Based Fitness |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.6 Niche-Based Rule Discovery |
|
|
90 | (2) |
|
4.7 Single- vs. Multi-step Learning |
|
|
92 | (6) |
|
|
93 | (2) |
|
|
95 | (2) |
|
4.7.3 Anticipatory Classifier Systems |
|
|
97 | (1) |
|
|
98 | (3) |
|
4.8.1 S-Expression and Genetic Programming |
|
|
98 | (1) |
|
4.8.2 Artificial Neural Networks |
|
|
99 | (1) |
|
4.8.3 Computed Prediction |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (1) |
|
4.9 Environment Considerations |
|
|
101 | (2) |
|
|
103 | |
|
|
104 | (10) |
|
5.1.1 Run Parameter `Sweet Spots' |
|
|
110 | (3) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (2) |
|
5.3.1 Lack of Convergence |
|
|
116 | (1) |
|
|
117 | (6) |
|
5.4.1 Workshops and Conferences |
|
|
117 | (1) |
|
5.4.2 Books, Journals, and Select Reviews |
|
|
118 | (3) |
|
5.4.3 Websites and Software |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | |