Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Lorentz Geometry: Curves and Surfaces

  • Formatas: 350 pages
  • Išleidimo metai: 05-Jan-2021
  • Leidėjas: Chapman & Hall/CRC
  • ISBN-13: 9781000223361
Kitos knygos pagal šią temą:
  • Formatas: 350 pages
  • Išleidimo metai: 05-Jan-2021
  • Leidėjas: Chapman & Hall/CRC
  • ISBN-13: 9781000223361
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Lorentz Geometry is a very important intersection between Mathematics and Physics, being the mathematical language of General Relativity.

Learning this type of geometry is the first step in properly understanding questions regarding the structure of the universe, such as: What is the shape of the universe? What is a spacetime? What is the relation between gravity and curvature? Why exactly is time treated in a different manner than other spatial dimensions?

Introduction to Lorentz Geometry: Curves and Surfaces

intends to provide the reader with the minimum mathematical background needed to pursue these very interesting questions, by presenting the classical theory of curves and surfaces in both Euclidean and Lorentzian ambient spaces simultaneously.

Features:

  • Over 300 exercises
  • Suitable for senior undergraduates and graduates studying Mathematics and Physics
  • Written in an accessible style without loss of precision or mathematical rigor
    • Solution manual available on www.routledge.com/9780367468644


  • This book intends to provide the reader with the minimum math background needed to pursue interesting questions like what is the relation between gravity and curvature by presenting the classical theory of curves and surfaces in both Euclidean and Lorentzian ambient spaces simultaneously.

     

    1. Welcome to Lorentz-Minkowski Space. 1.1. PseudoEuclidean Spaces.
    1.2. Subspaces of R. 1.3. Contextualization in Special Relativity. 1.4.
    Isometries in R. 1.5. Investigating O1(2, R) And O1(3, R). 1.6 Cross
    Product in R.
    2. Local Theory of Curves. 2.1. Parametrized Curves in R.
    2.2. Curves in the Plane. 2.3. Curves in Space.
    3. Surfaces in Space. 3.1.
    Basic Topology of Surfaces. 3.2. Casual type of Surfaces, First Fundamental
    Form. 3.3. Second Fundamental Form and Curvatures. 3.4. The Diagonalization
    Problem. 3.5. Curves in Surface. 3.6. Geodesics, Variational Methods and
    Energy. 3.7. The Fundamental Theorem of Surfaces.
    4. Abstract Surfaces and
    Further Topics. 4.1. Pseudo-Riemannian Metrics. 4.2. Riemanns Classification
    Theorem. 4.3. Split-Complex Numbers and Critical Surfaces. 4.4 Digression:
    Completeness and Causality
    Ivo Terek Couto, born in Sćo Paulo, graduated with a B.Sc. and a M.Sc. in Mathematics from the Institute of Mathematics and Statistics of the University of Sćo Paulo (IMEUSP). Hes currently pursuing PhD at The Ohio State University in Columbus, Ohio. His study and research interests lie mainly in Differential Geometry and its applications in other areas of Mathematics and Physics, particularly in General Relativity and Classical Mechanics.

    Alexandre Lymberopoulos, born in Sćo Paulo, has a PhD in Mathematics from the Institute of Mathematics and Statistics of the University of Sćo Paulo (IMEUSP). He has taught in several higher education institutes in Sćo Paulo and returned to IMEUSP as an Assistant Professor in 2011. His main research interest is in Differential Geometry, particularly in immersions and its interactions with other branches of Science.