Atnaujinkite slapukų nuostatas

Introduction to Mixed-Signal, Embedded Design 2011 [Kietas viršelis]

  • Formatas: Hardback, 452 pages, aukštis x plotis: 254x178 mm, weight: 2300 g, XXIV, 452 p. With online files/update., 1 Hardback
  • Išleidimo metai: 21-Dec-2010
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1441974458
  • ISBN-13: 9781441974457
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 452 pages, aukštis x plotis: 254x178 mm, weight: 2300 g, XXIV, 452 p. With online files/update., 1 Hardback
  • Išleidimo metai: 21-Dec-2010
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1441974458
  • ISBN-13: 9781441974457
Kitos knygos pagal šią temą:
This textbook is written for junior/senior undergraduate and first-year graduate students in the electrical and computer engineering departments.Using PSoC mixed-signal array design, the authors define the characteristics of embedd design, embedded mixed-signal architectures, and top-down design.  Optimized implementations of these designs are included to illustrate the theory.  Exercises are provided at the end of each chapter for practice. Topics covered include the hardware and software used to implement analog and digital interfaces, various filter structures, amplifiers and other signal-conditioning circuits, pulse-width modulators, timers, and data structures for handling multiple similar peripheral devices.The practical exercises contained in the companion laboratory manual, which was co-authored by Cypress Staff Applications Engineer Dave Van Ess, are also based on PSoC.  PSoC's integrated microcontroller, highly configurable analog/digital peripherals, and a full set of development tools make it an ideal learning tool for developing mixed-signal embedded design skills.

Using PSoC mixed-signal array design, the authors of this book define the characteristics of embedded design, embedded mixed-signal architectures, and top-down design. Weaving theory and applications together, the book contains numerous exercises.
Preface xix
Acknowledgment xxiii
1 An Overview of Mixed-Signal, Embedded System Design
1(50)
1.1 Embedded Applications
2(10)
1.2 Embedded Architectures
12(7)
1.3 Top-Down Design Flow
19(4)
1.4 Embedded Systems Market
23(1)
1.5 Embedded Design Example: Fan Control System
23(19)
1.5.1 Description of the Fan Controller System
24(5)
1.5.2 Design of the Fan Controller System
29(13)
1.6 Conclusions
42(1)
1.7 Further Readings
43(2)
1.8 Recommended Exercises
45(6)
2 Microcontroller Architecture
51(52)
2.1 Microcontroller Architecture
51(40)
2.1.1 Microcontroller Addressing Modes
53(3)
2.1.2 Instruction Set
56(35)
2.2 Memory Space
91(5)
2.3 Conclusions
96(2)
2.4 Recommended Exercises
98(5)
3 Hardware and Software Subsystems of Mixed-Signal Architectures
103(48)
3.1 Subsystems of the PSoC Mixed-Signal Architecture
104(10)
3.1.1 PSoC Hardware Components
106(4)
3.1.2 PSoC Software Components
110(4)
3.2 The PSoC Interrupt Subsystem
114(10)
3.2.1 Case Study: Tachometer Interrupt Service Routines
117(7)
3.3 Global I/O Ports
124(4)
3.4 System Buses
128(15)
3.5 System Clocks
143(3)
3.6 Conclusions
146(3)
3.7 Recommended Exercises
149(2)
4 Performance Improvement by Customization
151(56)
4.1 Introduction to Application-Specific Customization
152(3)
4.2 Design Methodology for Architecture Customization
155(18)
4.2.1 System Specification and Profiling
155(5)
4.2.2 System Partitioning and Implementation
160(13)
4.3 Programmable Digital Blocks
173(11)
4.3.1 Timer Block
176(6)
4.3.2 Counter Block
182(1)
4.3.3 Deadband Block
183(1)
4.4 Customized PSoC Digital Blocks
184(17)
4.4.1 Pulse Width Modulator Blocks
184(5)
4.4.2 Multiply ACcumulate
189(7)
4.4.3 Decimator Blocks
196(5)
4.5 Conclusions
201(2)
4.6 Recommended Exercises
203(4)
5 Programmable Data Communication Blocks
207(36)
5.1 Abstract Communication Channels
208(4)
5.2 Channel Implementation Units
212(2)
5.3 Hardware-Software Implementation of Channels
214(5)
5.4 Channel Implementation Unit: SPI Block
219(10)
5.4.1 Hardware Circuit
220(6)
5.4.2 Software Routines
226(3)
5.5 Channel Implementation Unit: UART Block
229(9)
5.5.1 UART Hardware Circuit
230(4)
5.5.2 Software Routines
234(4)
5.6 Conclusions
238(1)
5.7 Recommended Exercises
239(4)
6 Continuous-Time, Analog Building Blocks
243(46)
6.1 Introduction to Operational Amplifiers
244(19)
6.1.1 Ideal OpAmps
244(1)
6.1.2 Real OpAmps
244(10)
6.1.3 OpAmp Macromodeling
254(9)
6.2 Continuous-Time Analog Building Blocks
263(13)
6.2.1 Inverting Amplifiers
263(7)
6.2.2 Non-Inverting Amplifier
270(1)
6.2.3 Summing Amplifier
271(1)
6.2.4 Difference Amplifier
272(1)
6.2.5 Integrator
272(3)
6.2.6 Comparator
275(1)
6.3 Reconfigurable Continuous-Time Analog Blocks
276(7)
6.4 Conclusions
283(2)
6.5 Recommended Exercises
285(4)
7 Switched-Capacitor Blocks
289(36)
7.1 Introduction to Switched Capacitor Techniques
290(5)
7.1.1 Nonidealities in Switched Capacitor Circuits
291(4)
7.2 Active Switched Capacitor Circuits
295(11)
7.2.1 Fixed Gain Amplifier
295(4)
7.2.2 Comparators
299(1)
7.2.3 Switched Capacitor Integrator
300(2)
7.2.4 Switched Capacitor Differentiator
302(1)
7.2.5 Reference Selection
303(2)
7.2.6 Analog-to-Digital Conversion
305(1)
7.3 Switched Capacitor PSoC Blocks
306(14)
7.3.1 Type C Switched Capacitor Blocks
307(4)
7.3.2 Type D Switched Capacitor Blocks
311(9)
7.4 Conclusions
320(2)
7.5 Recommended Exercises
322(3)
8 Analog and Digital Filters
325(48)
8.1 Filter Fundamentals
326(6)
8.1.1 Passive Filters
327(1)
8.1.2 Linear Active Filters
328(2)
8.1.3 Digital Filters
330(1)
8.1.4 Filter Components
331(1)
8.2 Filter Design
332(12)
8.2.1 Specific Filter Types
334(4)
8.2.2 Filter Parameters
338(1)
8.2.3 Scaling and Normalization
339(1)
8.2.4 Cascading Analog Filters
340(4)
8.3 Analog Filters
344(13)
8.3.1 Time-Continuous Integrators as Filters
344(2)
8.3.2 The Passive Lowpass Filter
346(3)
8.3.3 The Sallen-Key Lowpass Active Filter
349(2)
8.3.4 The Switched-Capacitance Filter
351(1)
8.3.5 Biquad Switched Capacitor Filter
352(3)
8.3.6 An Allpass Filter
355(2)
8.4 Digital Filters
357(8)
8.4.1 Digital FIR Filter
359(3)
8.4.2 Infinite Impulse Response Filter
362(3)
8.5 Filter Design Software Tools
365(1)
8.6 Conclusion
366(1)
8.7 Recommended Exercises
367(6)
9 ΔΣ Analog-to-Digital Converters
373(40)
9.1 Nyquist ADCs-A Short Introduction
374(5)
9.1.1 Sampling and Quantization
374(1)
9.1.2 Sampling
374(4)
9.1.3 Quantization
378(1)
9.2 ΔΣ ADCs
379(30)
9.2.1 Oversampling and Noise-Shaping
380(1)
9.2.2 ΔΣ ADC Performance
381(2)
9.2.3 First-Order ΔΣ Modulator
383(4)
9.2.4 PSoC Implementation of First-Order ΔΣ Modulators
387(7)
9.2.5 Impact of Circuit Non-Idealities on ΔΣ Modulator Performance
394(11)
9.2.6 Second-Order ΔΣ Modulator
405(4)
9.3 Conclusions
409(4)
10 Future Directions in Mixed-Signal Design Automation
413
10.1 Top-Down Design and Design Activities
413(2)
10.2 Two Examples of Architecture Customization
415(6)
10.2.1 IDEA Algorithm for Data Encryption
415(2)
10.2.2 Face Detection for Image Processing
417(4)
10.3 Challenges in Mixed-Signal Design Automation
421
10.3.1 High-Level Specification of Analog and Mixed-Signal Systems
422(2)
10.3.2 Fast Performance Estimation by Customized Simulation Code
424(11)
10.3.3 High-Level Synthesis of Analog Subsystems
435
Index 443
Alex Doboli is a professor at SUNY-Stony Brook. Eddie Currie has spent the past twenty-five years developing and managing businesses and products for personal computers.