Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Non-Abelian Discrete Symmetries for Particle Physicists

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Physics 858
  • Išleidimo metai: 25-Jul-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642308055
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Physics 858
  • Išleidimo metai: 25-Jul-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642308055

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory - e.g. the string theory or compactification via orbifolding – thereby providing a possible bridge between the underlying theory and the corresponding low-energy sector of particle physics. This text explicitly introduces and studies the group-theoretical aspects of many concrete groups and shows how to derive conjugacy classes, characters, representations, and tensor products for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest.

This book introduces and explores the group-theoretical aspects of many concrete groups and shows how to derive conjugacy classes, characters, representations, and tensor products for these groups (with a finite number) when algebraic relations are given.

Recenzijos

From the reviews:

This book presents, for the first time, a self-contained and complete practical guide for the use of (non-Abelian) discrete groups in particle physics, and more precisely for current developments in the context of the three-generation flavor models. this book constitutes a very valuable handbook for any physicist interested in the role of finite groups in the explicit construction of flavor models, and it will certainly become one of the canonical references for practical use. (Rutwig Campoamor-Stursberg, Mathematical Reviews, June, 2013)

1 Introduction
1(12)
References
3(10)
2 Basics of Finite Groups
13(8)
References
20(1)
3 SN
21(10)
3.1 S3
21(4)
3.1.1 Conjugacy Classes
21(1)
3.1.2 Characters and Representations
22(1)
3.1.3 Tensor Products
22(3)
3.2 S4
25(6)
3.2.1 Conjugacy Classes
27(1)
3.2.2 Characters and Representations
27(2)
3.2.3 Tensor Products
29(1)
References
30(1)
4 AN
31(12)
4.1 A4
31(3)
4.2 A5
34(9)
4.2.1 Conjugacy Classes
35(1)
4.2.2 Characters and Representations
35(2)
4.2.3 Tensor Products
37(4)
References
41(2)
5 T'
43(8)
5.1 Conjugacy Classes
43(1)
5.2 Characters and Representations
44(3)
5.3 Tensor Products
47(4)
6 DN
51(10)
6.1 DN with N Even
51(5)
6.1.1 Conjugacy Classes
52(1)
6.1.2 Characters and Representations
52(2)
6.1.3 Tensor Products
54(2)
6.2 DN with N Odd
56(2)
6.2.1 Conjugacy Classes
56(1)
6.2.2 Characters and Representations
56(1)
6.2.3 Tensor Products
57(1)
6.3 D4
58(1)
6.4 D5
59(2)
7 QN
61(8)
7.1 QN with N = 4n
61(3)
7.1.1 Conjugacy Classes
62(1)
7.1.2 Characters and Representations
62(1)
7.1.3 Tensor Products
62(2)
7.2 QN with N = 4n + 2
64(2)
7.2.1 Conjugacy Classes
64(1)
7.2.2 Characters and Representations
64(1)
7.2.3 Tensor Products
65(1)
7.3 Q4
66(1)
7.4 Q6
67(2)
8 QD2N
69(6)
8.1 Generic Aspects
69(3)
8.1.1 Conjugacy Classes
70(1)
8.1.2 Characters and Representations
70(1)
8.1.3 Tensor Products
71(1)
8.2 QD16
72(3)
9 Σ(2N2)
75(12)
9.1 Generic Aspects
75(3)
9.1.1 Conjugacy Classes
75(1)
9.1.2 Characters and Representations
76(1)
9.1.3 Tensor Products
77(1)
9.2 Σ(18)
78(2)
9.3 Σ(32)
80(4)
9.4 Σ(50)
84(3)
10 Δ(3N2)
87(10)
10.1 Δ(3N2) with N /3 ≠ Integer
87(4)
10.1.1 Conjugacy Classes
88(1)
10.1.2 Characters and Representations
89(1)
10.1.3 Tensor Products
89(2)
10.2 Δ(3N2) with N /3 Integer
91(3)
10.2.1 Conjugacy Classes
91(1)
10.2.2 Characters and Representations
92(1)
10.2.3 Tensor Products
93(1)
10.3 Δ(27)
94(3)
References
95(2)
11 TN
97(12)
11.1 Generic Aspects
97(3)
11.1.1 Conjugacy Classes
98(1)
11.1.2 Characters and Representations
99(1)
11.1.3 Tensor Products
99(1)
11.2 T7
100(2)
11.3 T13
102(2)
11.4 T19
104(5)
References
108(1)
12 Σ(3N3)
109(14)
12.1 Generic Aspects
109(4)
12.1.1 Conjugacy Classes
110(1)
12.1.2 Characters and Representations
111(1)
12.1.3 Tensor Products
112(1)
12.2 Σ(81)
113(10)
References
121(2)
13 Δ(6N2)
123(24)
13.1 Δ(6N2) with N /3 ≠ Integer
123(8)
13.1.1 Conjugacy Classes
123(3)
13.1.2 Characters and Representations
126(2)
13.1.3 Tensor Products
128(3)
13.2 Δ(6N2) with N /3 Integer
131(7)
13.2.1 Conjugacy Classes
131(2)
13.2.2 Characters and Representations
133(1)
13.2.3 Tensor Products
134(4)
13.3 Δ(54)
138(9)
13.3.1 Conjugacy Classes
138(1)
13.3.2 Characters and Representations
139(2)
13.3.3 Tensor Products
141(4)
References
145(2)
14 Subgroups and Decompositions of Multiplets
147(38)
14.1 S3
147(2)
14.1.1 S3 → Z3
148(1)
14.1.2 S3 → Z2
148(1)
14.2 S4
149(3)
14.2.1 S4 → S3
150(1)
14.2.2 S4 → A4
151(1)
14.2.3 S4 → Σ(8)
151(1)
14.3 A4
152(1)
14.3.1 A4 → Z3
152(1)
14.3.2 A4 → Z2 × Z2
153(1)
14.4 A5
153(1)
14.4.1 A5 → A4
153(1)
14.4.2 A5 → D5
153(1)
14.4.3 A5 → S3 D3
154(1)
14.5 T'
154(1)
14.5.1 T' → Z6
154(1)
14.5.2 T' → Z4
155(1)
14.5.3 T' → Q4
155(1)
14.6 General DN
155(3)
14.6.1 DN → Z2
156(1)
14.6.2 DN → ZN
157(1)
14.6.3 DN → DM
157(1)
14.7 D4
158(1)
14.7.1 D4 → Z4
158(1)
14.7.2 D4 → Z2 × Z2
159(1)
14.7.3 D4 → Z2
159(1)
14.8 General QN
159(3)
14.8.1 QN → Z4
160(1)
14.8.2 QN → ZN
161(1)
14.8.3 QN → QM
161(1)
14.9 Q4
162(1)
14.9.1 Q4 → Z4
162(1)
14.10 QD2N
162(2)
14.10.1 QD2N → Z2
163(1)
14.10.2 QD2N → ZN
163(1)
14.10.3 QD2N → DN /2
163(1)
14.11 General Σ(2N2)
164(3)
14.11.1 Σ(2N2) → Z2N
164(1)
14.11.2 Σ(2N2) → ZN × ZN
164(1)
14.11.3 Σ(2N2) → DN
165(1)
14.11.4 Σ(2N2) → QN
166(1)
14.11.5 Σ(2N2) → Σ(2M2)
166(1)
14.12 Σ(32)
167(1)
14.13 General Δ(3N2)
168(4)
14.13.1 Δ(3N2) → Z3
169(1)
14.13.2 Δ(3N2) → ZN × ZN
169(1)
14.13.3 Δ(3N2) → TN
170(1)
14.13.4 Δ(3N2) → Δ(3M2)
170(2)
14.14 Δ(27)
172(1)
14.14.1 Δ(27) → Z3
172(1)
14.14.2 Δ(27) → Z3 × Z3
172(1)
14.15 General TN
173(1)
14.15.1 TN → Z3
173(1)
14.15.2 TN → ZN
173(1)
14.16 T7
174(1)
14.16.1 T7 → Z3
174(1)
14.16.2 T7 → Z7
175(1)
14.17 General Σ(3N3)
175(1)
14.17.1 Σ(3N2) → ZN × ZN × ZN
175(1)
14.17.2 Σ(3N3) → Δ(3N2)
175(1)
14.17.3 Σ(3N3) → Σ(3M3)
176(1)
14.18 Σ(81)
176(2)
14.18.1 Σ(81) → Z3 × Z3 × Z3
177(1)
14.18.2 Σ(81) → Δ(27)
177(1)
14.19 General Δ(6N2)
178(3)
14.19.1 Δ(6N2) → Σ(2N2)
179(1)
14.19.2 Δ(6N2) → Δ(3N2)
180(1)
14.19.3 Δ(6N2) → Δ(6M2)
180(1)
14.20 Δ(54)
181(4)
14.20.1 Δ(54) → S3 × Z3
182(1)
14.20.2 Δ(54) → Σ(18)
182(1)
14.20.3 Δ(54) → Δ(27)
183(2)
15 Anomalies
185(20)
15.1 Generic Aspects
185(4)
15.2 Explicit Calculations
189(14)
15.2.1 S3
189(1)
15.2.2 S4
190(1)
15.2.3 A4
190(1)
15.2.4 A5
191(1)
15.2.5 T'
192(1)
15.2.6 DN (N Even)
193(1)
15.2.7 DN (N Odd)
194(1)
15.2.8 QN (N = 4n)
194(1)
15.2.9 QN (N = 4n + 2)
195(1)
15.2.10 QD2N
196(1)
15.2.11 Σ(2N2)
197(1)
15.2.12 Δ(3N2) (N /3 ≠ Integer)
198(1)
15.2.13 Δ(3N2) (N /3 Integer)
199(1)
15.2.14 TN
200(1)
15.2.15 Σ(3N3)
201(1)
15.2.16 Δ(6N2) (N /3 ≠ Integer)
202(1)
15.2.17 Δ(6N2) (N /3 Integer)
203(1)
15.3 Comments on Anomalies
203(2)
References
204(1)
16 Non-Abelian Discrete Symmetry in Quark/Lepton Flavor Models
205(80)
16.1 Neutrino Flavor Mixing and Neutrino Mass Matrix
205(2)
16.2 A4 Flavor Symmetry
207(4)
16.2.1 Realizing Tri-Bimaximal Mixing of Flavors
207(2)
16.2.2 Breaking Tri-Bimaximal Mixing
209(2)
16.3 S4 Flavor Model
211(8)
16.4 Alternative Flavor Mixing
219(3)
16.5 Comments on Other Applications
222(1)
16.6 Comment on Origins of Flavor Symmetries
223(6)
References
224(5)
Appendix A Useful Theorems
229(8)
References
235(2)
Appendix B Representations of S4 in Different Bases
237(1)
B.1 Basis I
237(1)
B.2 Basis II
238(2)
B.3 Basis III
240(2)
B.4 Basis IV
242(3)
References
244(1)
Appendix C Representations of A4 in Different Bases
245(1)
C.1 Basis I
245(1)
C.2 Basis II
245(2)
References
246(1)
Appendix D Representations of A5 in Different Bases
247(1)
D.1 Basis I
247(6)
D.2 Basis II
253(8)
References
259(2)
Appendix E Representations of T' in Different Bases
261(1)
E.1 Basis I
262(1)
E.2 Basis II
263(2)
References
264(1)
Appendix F Other Smaller Groups
265(1)
F.1 Z4 × Z4
265(3)
F.2 Z8 × Z2
268(2)
F.3 (Z2 × Z4) × Z2 (I)
270(2)
F.4 (Z2 × Z4) × Z2 (II)
272(3)
F.5 Z3 × Z8
275(2)
F.6 (Z6 × Z2) × Z2
277(4)
F.7 Z9 × Z3
281(4)
References
283(2)
Index 285