|
|
1 | (8) |
|
1.1 Partial Differential Equations |
|
|
1 | (1) |
|
1.2 Example: d'Alembert's Wave Equation |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (3) |
|
|
9 | (16) |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (2) |
|
2.5 Ordinary Differential Equations |
|
|
15 | (3) |
|
|
18 | (5) |
|
|
23 | (2) |
|
3 Conservation Equations and Characteristics |
|
|
25 | (20) |
|
3.1 Model Problem: Oxygen in the Bloodstream |
|
|
25 | (2) |
|
3.2 Lagrangian Derivative and Characteristics |
|
|
27 | (5) |
|
3.3 Higher-Dimensional Equations |
|
|
32 | (3) |
|
3.4 Quasilinear Equations |
|
|
35 | (6) |
|
|
41 | (4) |
|
|
45 | (30) |
|
4.1 Model Problem: Vibrating String |
|
|
45 | (2) |
|
|
47 | (4) |
|
|
51 | (2) |
|
|
53 | (6) |
|
4.5 Model Problem: Acoustic Waves |
|
|
59 | (2) |
|
4.6 Integral Solution Formulas |
|
|
61 | (6) |
|
4.7 Energy and Uniqueness |
|
|
67 | (2) |
|
|
69 | (6) |
|
5 Separation of Variables |
|
|
75 | (22) |
|
5.1 Model Problem: Overtones |
|
|
76 | (1) |
|
|
76 | (5) |
|
|
81 | (6) |
|
|
87 | (6) |
|
|
93 | (4) |
|
|
97 | (14) |
|
6.1 Model Problem: Heat Flow in a Metal Rod |
|
|
97 | (4) |
|
6.2 Scale-Invariant Solution |
|
|
101 | (2) |
|
6.3 Integral Solution Formula |
|
|
103 | (4) |
|
6.4 Inhomogeneous Problem |
|
|
107 | (2) |
|
|
109 | (2) |
|
|
111 | (20) |
|
7.1 Inner Products and Norms |
|
|
111 | (3) |
|
|
114 | (2) |
|
|
116 | (3) |
|
7.4 Convergence and Completeness |
|
|
119 | (3) |
|
|
122 | (3) |
|
|
125 | (3) |
|
|
128 | (3) |
|
|
131 | (24) |
|
8.1 Series Solution of the Heat Equation |
|
|
131 | (3) |
|
8.2 Periodic Fourier Series |
|
|
134 | (4) |
|
8.3 Pointwise Convergence |
|
|
138 | (3) |
|
|
141 | (2) |
|
|
143 | (2) |
|
8.6 Regularity and Fourier Coefficients |
|
|
145 | (6) |
|
|
151 | (4) |
|
|
155 | (22) |
|
9.1 Model Problem: The Laplace Equation |
|
|
155 | (6) |
|
|
161 | (4) |
|
9.3 Strong Principle for Subharmonic Functions |
|
|
165 | (2) |
|
9.4 Weak Principle for Elliptic Equations |
|
|
167 | (3) |
|
9.5 Application to the Heat Equation |
|
|
170 | (4) |
|
|
174 | (3) |
|
|
177 | (28) |
|
10.1 Test Functions and Weak Derivatives |
|
|
177 | (3) |
|
10.2 Weak Solutions of Continuity Equations |
|
|
180 | (7) |
|
|
187 | (3) |
|
|
190 | (4) |
|
10.5 Weak Formulation of Elliptic Equations |
|
|
194 | (2) |
|
10.6 Weak Formulation of Evolution Equations |
|
|
196 | (6) |
|
|
202 | (3) |
|
|
205 | (34) |
|
11.1 Model Problem: The Poisson Equation |
|
|
206 | (1) |
|
11.2 Dirichlet's Principle |
|
|
207 | (1) |
|
11.3 Coercivity and Existence of a Minimum |
|
|
208 | (6) |
|
|
214 | (3) |
|
11.5 Eigenvalues by Minimization |
|
|
217 | (7) |
|
11.6 Sequential Compactness |
|
|
224 | (3) |
|
11.7 Estimation of Eigenvalues |
|
|
227 | (7) |
|
11.8 Euler-Lagrange Equations |
|
|
234 | (3) |
|
|
237 | (2) |
|
|
239 | (22) |
|
12.1 Model Problem: Coulomb's Law |
|
|
239 | (3) |
|
12.2 The Space of Distributions |
|
|
242 | (3) |
|
12.3 Distributional Derivatives |
|
|
245 | (3) |
|
12.4 Fundamental Solutions |
|
|
248 | (4) |
|
|
252 | (5) |
|
12.6 Time-Dependent Fundamental Solutions |
|
|
257 | (2) |
|
|
259 | (2) |
|
|
261 | (16) |
|
|
261 | (6) |
|
13.2 Tempered Distributions |
|
|
267 | (4) |
|
|
271 | (2) |
|
|
273 | (1) |
|
|
273 | (4) |
Appendix A Analysis Foundations |
|
277 | (4) |
References |
|
281 | (2) |
Index |
|
283 | |