Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Particle and Astroparticle Physics: Questions to the Universe

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book, written by researchers who worked in accelerator physics before becoming leaders of groups in astroparticle physics, demonstrates that a renewed study of cosmic rays must be a part of "modern" research in the new particle physics.



The early history of particle physics cannot be distinguished from the history of cosmic rays. With the advent of accelerators, however, cosmic rays lost their importance in particle physics. This situation persisted until the 1990s, when novel techniques allowed breakthrough discoveries, and exploration of new physics scales now requires going back to cosmic rays. The new profile of scientists in fundamental physics ideally involves the merging of knowledge in astroparticle and particle physics, but the duration of modern experiments is such that people cannot simultaneously be practitioners in both. This book, written by researchers who had been professionals in accelerator physics before becoming leaders of groups in astroparticle physics, bridges the gap; it can be used as a self-training book, a consultation book, or a textbook for a “modern” approach to particles and fundamental interactions.
1 Understanding the Universe: Cosmology, Astrophysics, Particles, and Their Interactions 1(20)
1.1 Particle and Astroparticle Physics
1(2)
1.2 Particles and Fields
3(4)
1.3 A Quick Look at the Universe
7(8)
1.4 Cosmic Rays
15(6)
2 The Birth and the Basics of Particle Physics 21(50)
2.1 The Atom
21(1)
2.2 The Rutherford Experiment
22(2)
2.3 fi Decay and the Neutrino Hypothesis
24(2)
2.4 Uncertainty Principle and the Scale of Measurements
26(1)
2.5 Cross-Section and Interaction Length
27(5)
2.5.1 Total Cross-Section
27(2)
2.5.2 Differential Cross-Sections
29(1)
2.5.3 Cross-Sections at Colliders
29(1)
2.5.4 Partial Cross-Sections
30(1)
2.5.5 Interaction Length
31(1)
2.6 Decay Width and Lifetime
32(2)
2.7 The Fermi Golden Rule and the Rutherford Scattering
34(4)
2.7.1 Transition Amplitude
35(2)
2.7.2 Flux
37(1)
2.7.3 Density of States
37(1)
2.8 The Modern View of Scattering: Quantum Field Exchange
38(2)
2.8.1 Feynman Diagrams
39(1)
2.9 Particle Scattering in Static Fields
40(4)
2.9.1 Extended Charge Distributions (Non Relativistic)
40(1)
2.9.2 Finite Range Interactions
41(1)
2.9.3 Electron Scattering
42(2)
2.10 Special Relativity
44(17)
2.10.1 Lorentz Transformations
45(4)
2.10.2 Space-Time Interval
49(1)
2.10.3 Energy and Momentum
50(2)
2.10.4 Examples of Relativistic Dynamics
52(1)
2.10.5 Mandelstam Variables
53(2)
2.10.6 Lorentz Invariant Fermi Rule
55(2)
2.10.7 The Electromagnetic Tensor and the Covariant Formulation of Electromagnetism
57(4)
2.11 Natural Units
61(10)
3 Cosmic Rays and the Development of Particle Physics 71(30)
3.1 The Puzzle of Atmospheric Ionization and the Discovery of Cosmic Rays
71(7)
3.1.1 Experiments Underwater and in Height
73(5)
3.1.2 The Nature of Cosmic Rays
78(1)
3.2 Cosmic Rays and the Beginning of Particle Physics
78(17)
3.2.1 Relativistic Quantum Mechanics and Antimatter
79(9)
3.2.2 The Discovery of Antimatter
88(1)
3.2.3 Cosmic Rays and the Progress of Particle Physics
89(2)
3.2.4 The µ Lepton and the π Mesons
91(2)
3.2.5 Strange Particles
93(2)
3.2.6 Mountain-Top Laboratories
95(1)
3.3 Particle Hunters Become Farmers
95(2)
3.4 The Recent Years
97(4)
4 Particle Detection 101(88)
4.1 Interaction of Particles with Matter
101(19)
4.1.1 Charged Particle Interactions
101(9)
4.1.2 Range
110(1)
4.1.3 Photon Interactions
111(3)
4.1.4 Nuclear (Hadronic) Interactions
114(1)
4.1.5 Interaction of Neutrinos
114(1)
4.1.6 Electromagnetic Showers
115(4)
4.1.7 Hadronic Showers
119(1)
4.2 Particle Detectors
120(15)
4.2.1 Track Detectors
120(9)
4.2.2 Photosensors
129(2)
4.2.3 Cherenkov Detectors
131(2)
4.2.4 Transition Radiation Detectors
133(1)
4.2.5 Calorimeters
133(2)
4.3 High-Energy Particles
135(5)
4.3.1 Artificial Accelerators
136(3)
4.3.2 Cosmic Rays as Very-High-Energy Beams
139(1)
4.4 Detector Systems and Experiments at Accelerators
140(13)
4.4.1 Examples of Detectors for Fixed Target Experiments
142(3)
4.4.2 Examples of Detectors for Colliders
145(8)
4.5 Cosmic-Ray Detectors
153(36)
4.5.1 Interaction of Cosmic Rays with the Atmosphere; Extensive Air Showers
154(3)
4.5.2 Detectors of Charged Cosmic Rays
157(7)
4.5.3 Photon Detection
164(13)
4.5.4 Neutrino Detection
177(5)
4.5.5 Detection of Gravitational Waves
182(7)
5 Particles and Symmetries 189(56)
5.1 A Zoo of Particles
189(2)
5.2 Symmetries and Conservation Laws: The Noether Theorem
191(2)
5.3 Symmetries and Groups
193(21)
5.3.1 A Quantum Mechanical View of the Noether's Theorem
194(2)
5.3.2 Some Fundamental Symmetries in Quantum Mechanics
196(3)
5.3.3 Unitary Groups and Special Unitary Groups
199(1)
5.3.4 SU(2)
199(3)
5.3.5 SU(3)
202(2)
5.3.6 Discrete Symmetries: Parity, Charge Conjugation, and Time Reversal
204(3)
5.3.7 Isospin
207(4)
5.3.8 The Eightfold Way
211(3)
5.4 The Quark Model
214(9)
5.4.1 SU(3)flavor
214(2)
5.4.2 The Color
216(1)
5.4.3 Excited States (Nonzero Angular Momenta Between Quarks)
217(1)
5.4.4 The Charm Quark
218(3)
5.4.5 Beauty and Top
221(2)
5.5 Quarks and Partons
223(14)
5.5.1 Elastic Scattering
223(1)
5.5.2 Inelastic Scattering Kinematics
224(3)
5.5.3 Deep Inelastic Scattering
227(3)
5.5.4 The Quark-Parton Model
230(6)
5.5.5 The Number of Quark Colors
236(1)
5.6 Leptons
237(3)
5.6.1 The Discovery of the τ Lepton
237(2)
5.6.2 Three Neutrinos
239(1)
5.7 The Particle Data Group and the Particle Data Book
240(5)
5.7.1 PDG: Estimates of Physical Quantities
241(1)
5.7.2 Averaging Procedures by the PDG
241(4)
6 Interactions and Field Theories 245(116)
6.1 The Lagrangian Representation of a Dynamical System
247(3)
6.1.1 The Lagrangian and the Noether Theorem
248(1)
6.1.2 Lagrangians and Fields; Lagrangian Density
249(1)
6.1.3 Lagrangian Density and Mass
250(1)
6.2 Quantum Electrodynamics (QED)
250(35)
6.2.1 Electrodynamics
250(3)
6.2.2 Minimal Coupling
253(3)
6.2.3 Gauge Invariance
256(3)
6.2.4 Dirac Equation Revisited
259(11)
6.2.5 Klein-Gordon Equation Revisited
270(2)
6.2.6 The Lagrangian for a Charged Fermion in an Electromagnetic Field: Electromagnetism as a Field Theory
272(3)
6.2.7 An Introduction to Feynman Diagrams: Electromagnetic Interactions Between Charged Spinless Particles
275(4)
6.2.8 Electron-Muon Elastic Scattering
279(2)
6.2.9 Renormalization and Vacuum Polarization
281(4)
6.3 Weak Interactions
285(38)
6.3.1 The Fermi Model of Weak Interactions
285(3)
6.3.2 Parity Violation
288(2)
6.3.3 V-A Theory
290(2)
6.3.4 "Left" and "Right" Chiral Particle States
292(3)
6.3.5 Intermediate Vector Bosons
295(9)
6.3.6 The Cabibbo Angle and the GM Mechanism
304(4)
6.3.7 Extension to Three Quark Families: The CKM Matrix
308(2)
6.3.8 CP Violation
310(11)
6.3.9 Matter-Antimatter Asymmetry
321(2)
6.4 Strong Interactions and QCD
323(38)
6.4.1 Yang-Mills Theories
324(2)
6.4.2 The Lagrangian of QCD
326(1)
6.4.3 Vertices in QCD; Color Factors
327(1)
6.4.4 The Strong Coupling
328(3)
6.4.5 Asymptotic Freedom and Confinement
331(1)
6.4.6 Hadronization; Final States from Hadronic Interactions
331(9)
6.4.7 Hadronic Cross Section
340(21)
7 The Higgs Mechanism and the Standard Model of Particle Physics 361(60)
7.1 The Higgs Mechanism and the Origin of Mass
363(6)
7.1.1 Spontaneous Symmetry Breaking
363(1)
7.1.2 An Example from Classical Mechanics
364(1)
7.1.3 Application to Field Theory: Massless Fields Acquire Mass
365(2)
7.1.4 From SSB to the Higgs Mechanism: Gauge Symmetries and the Mass of Gauge Bosons
367(2)
7.2 Electroweak Unification
369(14)
7.2.1 The Formalism of the Electroweak Theory
371(4)
7.2.2 The Higgs Mechanism in the Electroweak Theory, and the Mass of the Electroweak Bosons
375(3)
7.2.3 The Fermion Masses
378(1)
7.2.4 Interactions Between Fermions and Gauge Bosons
379(3)
7.2.5 Self-interactions of Gauge Bosons
382(1)
7.2.6 Feynman Diagram Rules for the Electroweak Interaction
382(1)
7.3 The Lagrangian of the Standard Model
383(4)
7.3.1 The Higgs Particle in the Standard Model
384(1)
7.3.2 Standard Model Parameters
384(2)
7.3.3 Accidental Symmetries
386(1)
7.4 Observables in the Standard Model
387(2)
7.5 Experimental Tests of the SM at Accelerators
389(19)
7.5.1 Data Versus Experiments: LEP (and the Tevatron)
390(13)
7.5.2 LHC and the Discovery of the Higgs Boson
403(5)
7.6 Beyond the Minimal SM of Particle Physics; Unification of Forces
408(13)
7.6.1 GUT
410(2)
7.6.2 Supersymmetry
412(3)
7.6.3 Strings and Extra Dimensions; Superstrings
415(2)
7.6.4 Compositeness
417(4)
8 The Standard Model of Cosmology and the Dark Universe 421(84)
8.1 Experimental Cosmology
422(29)
8.1.1 The Universe Is Expanding
422(7)
8.1.2 Cosmic Microwave Background
429(9)
8.1.3 Primordial Nucleosynthesis
438(5)
8.1.4 Astrophysical Evidence for Dark Matter
443(6)
8.1.5 Age of the Universe
449(2)
8.2 General Relativity
451(22)
8.2.1 Flat and Curved Spaces
455(3)
8.2.2 The Einstein Equations
458(3)
8.2.3 The Friedmann-Lemaitre-Robertson-Walker Model
461(11)
8.2.4 Black Holes
472(1)
8.3 Past, Present, and Future of the Universe
473(15)
8.3.1 Early Universe
473(8)
8.3.2 Inflation and Large-Scale Structures
481(5)
8.3.3 The ACDM Model
486(2)
8.4 What Is Dark Matter Made Of, and How Can It Be Found?
488(17)
8.4.1 Baryonic Dark Matter
488(2)
8.4.2 Weakly Interacting Particles
490(12)
8.4.3 Other Nonbaryonic Candidates
502(3)
9 The Properties of Neutrinos 505(32)
9.1 Sources and Detectors; Evidence of the Transmutation of the Neutrino Flavor
506(20)
9.1.1 Solar Neutrinos, and the Solar Neutrino Problem
506(5)
9.1.2 Neutrino Oscillation in a Two-Flavor System
511(4)
9.1.3 Long-Baseline Reactor Experiments and the Estimate of upsilone->upsilonµ Oscillation Parameters
515(1)
9.1.4 Atmospheric Neutrinos, and the upsilonµ->upsilonτ Oscillation
516(3)
9.1.5 Phenomenology of Neutrino Oscillations: Extension to Three Families
519(2)
9.1.6 Short-Baseline Reactor Experiments, and the Determination of 013
521(1)
9.1.7 Accelerator Neutrinos
522(2)
9.1.8 Explicit Appearance Experiment
524(1)
9.1.9 A Gift from Nature: Geo-Neutrinos
525(1)
9.2 Neutrino Oscillations; Present Knowledge of the Oscillation Parameters
526(2)
9.3 Neutrino Masses
528(9)
9.3.1 The Constraints from Cosmological and Astrophysical Data
528(1)
9.3.2 Direct Measurements of the Electron Neutrino Mass: Beta Decays
529(2)
9.3.3 Direct Measurements of the Muon- and Tau-Neutrino Masses
531(1)
9.3.4 Incorporating Neutrino Masses in the Theory
531(2)
9.3.5 Majorana Neutrinos and the Neutrinoless Double Beta Decay
533(2)
9.3.6 Present Mass Limits and Prospects
535(2)
10 Messengers from the High-Energy Universe 537(80)
10.1 The Data
537(24)
10.1.1 Charged Cosmic Rays
538(11)
10.1.2 Photons
549(8)
10.1.3 Neutrinos
557(2)
10.1.4 Gravitational Radiation
559(2)
10.2 How Are High-Energy Cosmic Rays Produced?
561(9)
10.2.1 Acceleration of Charged Cosmic Rays
561(5)
10.2.2 Production of High-Energy Gamma Rays
566(4)
10.2.3 Production of High-Energy Neutrinos
570(1)
10.3 Possible Acceleration Sites and Sources
570(17)
10.3.1 Stellar Endproducts
572(3)
10.3.2 Other Galactic Sources
575(1)
10.3.3 Extragalactic Sources
576(6)
10.3.4 Gamma Rays and the Origin of Cosmic Rays
582(3)
10.3.5 Sources of Neutrinos
585(1)
10.3.6 Sources of Gravitational Waves
586(1)
10.4 The Propagation Process
587(11)
10.4.1 Propagation of Charged Cosmic Rays
587(7)
10.4.2 Propagation of Photons
594(3)
10.4.3 Propagation of Neutrinos
597(1)
10.4.4 Propagation of Gravitational Waves
598(1)
10.5 Frontier Physics and Open Questions
598(19)
10.5.1 The Sources
598(2)
10.5.2 Ultrahigh-Energy Phenomena
600(3)
10.5.3 Top-Down Production Mechanisms for CR; WIMPs
603(4)
10.5.4 Lorentz Symmetry Violation
607(3)
10.5.5 Possible Anomalous Photon Propagation Effects
610(7)
11 Astrobiology and the Relation of Fundamental Physics to Life 617(30)
11.1 What is Life?
618(8)
11.1.1 Schrodinger's Definition of Life
619(1)
11.1.2 The Recipe of Life
619(5)
11.1.3 Life in Extreme Environments
624(1)
11.1.4 The Kickoff
625(1)
11.2 Life on the Solar System, Outside Earth
626(5)
11.2.1 Planets of the Solar System
628(1)
11.2.2 Satellites of Giant Planets
629(2)
11.3 Search for Life Outside the Solar System
631(14)
11.3.1 The "Drake Equation"
631(1)
11.3.2 The Search for Habitable Planets
632(3)
11.3.3 The Fermi Paradox
635(1)
11.3.4 Listening to Messages from Space
636(2)
11.3.5 Sending Messages to the Universe
638(7)
11.4 Conclusions
645(2)
Appendix A: Periodic Table of the Elements 647(2)
Appendix B: Properties of Materials 649(2)
Appendix C: Physical and Astrophysical Constants 651(2)
Index 653
Alessandro de Angelis is a high-energy physicist and astrophysicist. Full Professor at the University of Udine and the Instituto Superior Técnico (IST) of the University of Lisbon, he is currently Director of Research at INFN Padova and chairman of the collaboration board managing the MAGIC gamma-ray telescope at the Northern European Observatory, La Palma, Canary Islands. His main research interest is fundamental physics, especially astrophysics and elementary particle physics at accelerators. After graduating from Padova University, Professor de Angelis was employed at CERN in the 1990s, and he later became a founding member of the collaboration board managing the NASA Fermi gamma-ray telescope. He has been a lecturer in electromagnetism and astroparticle physics in Italy and Portugal and Visiting Professor at the ICRR in Tokyo, the Max-Planck Institute in Munich, and the University of Paris VI.

Mįrio Pimenta is a high-energy physicist and astrophysicist. He is Full Professor at the Instituto Superior Técnico (IST) of the University of Lisbon. In addition he is currently Director of the Laboratório de Instrumentaēćo e Partķculas (LIP), coordinator of the international PhD doctoral network IDPASC, and Portuguese representative at the Pierre Auger Observatory in Argentina. He was formerly a member of the WA72, WA74, NA38, and DELPHI experiments at CERN and of the EUSO collaboration at ESA. Professor Pimentas main research interests lie in high-energy physics, especially cosmic rays of extremely high energy, and the development of innovative detectors for astroparticle physics. After graduating from Lisbon and Paris VI universities, he was employed at CERN in the late 1980s. He has been a lecturer in general physics and particle physics in Portugal; he has also lectured at the University of Udine and been visiting professor at SISSA/ISAS in Trieste.