Atnaujinkite slapukų nuostatas

El. knyga: Introduction to PCM Telemetering Systems 3rd edition [Taylor & Francis e-book]

(New Mexico State University)
  • Formatas: 657 pages, 57 Tables, black and white; 1 Line drawings, color; 235 Line drawings, black and white; 1 Halftones, color; 70 Halftones, black and white
  • Išleidimo metai: 24-Oct-2017
  • Leidėjas: CRC Press
  • ISBN-13: 9781315298498
  • Taylor & Francis e-book
  • Kaina: 276,97 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standartinė kaina: 395,67 €
  • Sutaupote 30%
  • Formatas: 657 pages, 57 Tables, black and white; 1 Line drawings, color; 235 Line drawings, black and white; 1 Halftones, color; 70 Halftones, black and white
  • Išleidimo metai: 24-Oct-2017
  • Leidėjas: CRC Press
  • ISBN-13: 9781315298498

Introduction to PCM Telemetering Systems, Third Edition summarizes the techniques and terminology used in sending data and control information between users and the instruments that collect and process the data. Fully revised, it gives an overall systems introduction to the relevant topics in three primary areas: system interfaces; data transport, timing, and synchronization; and data transmission techniques. Integrating relevant information about the process at all levels from the user interface down to the transmission channel, this will also include how designers apply relevant industry and government standards at each level in this process. Homework problems are included at the end of each chapter.

List of Figures xxi
List of Tables xxxiii
Preface xxxvii
Author xli
Chapter 1 Introduction 1(18)
1.1 System Context
1(6)
1.1.1 Definition of Telemetry and Telecommand
4(1)
1.1.2 Link Definitions
5(1)
1.1.3 Pulse Code Modulation Definition
5(2)
1.2 System Components
7(4)
1.3 Organization Of The Text
11(2)
1.4 References
13(6)
Section I: System Elements
Chapter 2 Measurement Technology
19(48)
2.1 Introduction
19(1)
2.2 Objectives
20(2)
2.3 Measurement Environment
22(9)
2.3.1 General Components
22(3)
2.3.2 Measurement Definitions
25(6)
2.3.2.1 Measurement
26(1)
2.3.2.2 Input-Output Relationship
26(3)
2.3.2.3 Precision, Accuracy, and Reproducibility
29(2)
2.3.2.4 Absolute Measurement and Differential Measurement
31(1)
2.4 Representative Sensor Technology
31(27)
2.4.1 Resistive Sensors
32(7)
2.4.1.1 Pressure, Strain, or Force Measurements
33(2)
2.4.1.2 Temperature Measurements
35(3)
2.4.1.3 Light Measurements
38(1)
2.4.1.4 Position Measurements
39(1)
2.4.2 Capacitive Sensors
39(2)
2.4.2.1 Capacitive Rain Gauge
39(1)
2.4.2.2 Time Measurement
40(1)
2.4.3 Physical Effect Sensors
41(8)
2.4.3.1 Seebeck Effect
41(6)
2.4.3.2 Piezoelectric Effect
47(2)
2.4.4 Semiconductor Sensors
49(2)
2.4.4.1 Photodetectors
50(1)
2.4.4.2 Temperature Sensors
50(1)
2.4.5 Digital Time Measurement
51(4)
2.4.6 Hybrid Sensors
55(3)
2.5 Smart Sensors And RFID Sensors
58(3)
2.6 References
61(2)
2.7 Problems
63(4)
Chapter 3 Modeling And Calibration
67(52)
3.1 Background
67(2)
3.2 Objectives
69(1)
3.3 Basics
69(8)
3.3.1 Calibration
69(7)
3.3.1.1 Capacitive Rain Gauge Calibration Example
71(2)
3.3.1.2 Calibration Range
73(1)
3.3.1.3 Measurement Calibration Process
74(1)
3.3.1.4 Calibration Curve Variables
75(1)
3.3.1.5 Difference between Calibration and Usage
76(1)
3.3.2 Data Modeling
76(1)
3.3.2.1 Difference between Calibration and Data Modeling
76(1)
3.3.2.2 Modeling as Filtering
77(1)
3.4 Error Types
77(3)
3.4.1 Systematic Errors
77(1)
3.4.2 Random Errors
78(1)
3.4.3 Interference
79(1)
3.4.4 Hysteresis Error
79(1)
3.4.5 Dead Band Error
80(1)
3.5 Statistical Concepts
80(17)
3.5.1 Measurement Mathematical Model
81(1)
3.5.2 Probability Concepts
81(10)
3.5.2.1 Relative Frequency
82(1)
3.5.2.2 Probability Density
82(2)
3.5.2.3 Cumulative Distribution Function
84(1)
3.5.2.4 Gaussian Probability Density Function and Noise Model
85(3)
3.5.2.5 Electronic Noise
88(1)
3.5.2.6 Mean, Variance, and Standard Deviation Estimates
89(2)
3.5.3 Measurement Uncertainty
91(6)
3.5.3.1 Uncertainty Definition
91(2)
3.5.3.2 Confidence Intervals
93(1)
3.5.3.3 Number of Measurements Required
94(1)
3.5.3.4 Combined Uncertainty and Uncertainty Budget
94(3)
3.6 Least Squares Fitting
97(14)
3.6.1 Least Squares Definition
97(1)
3.6.2 Linear Least Squares-Mean Square Error Basis
98(1)
3.6.3 Linear Least Squares-Statistical Basis
99(2)
3.6.4 Quality of the Fit
101(2)
3.6.5 Correlation Coefficients
103(3)
3.6.5.1 f Statistic
105(1)
3.6.6 Nonlinear Fits
106(2)
3.6.6.1 Parametric Models
106(1)
3.6.6.2 Power Series Models
106(2)
3.6.7 Cautions with Least Squares
108(13)
3.6.7.1 Model Selection
108(1)
3.6.7.2 Outlying Points
109(2)
3.6.7.3 Over-fitting the Model
111(1)
3.7 References
111(2)
3.8 Problems
113(6)
Chapter 4 Computing System Elements
119(62)
4.1 Introduction
119(1)
4.2 Objectives
120(1)
4.3 Computer Systems
121(16)
4.3.1 Real-Time Computing Definition
121(4)
4.3.1.1 Interrupt Characteristics
122(2)
4.3.1.2 Software Characteristics
124(1)
4.3.2 Computer Input-Output Interfaces
125(12)
4.3.2.1 Serial Interfaces
125(8)
4.3.2.2 MIL-STD-1553
133(2)
4.3.2.3 Networks
135(2)
4.4 User Interface Systems
137(23)
4.4.1 Processing State Diagram
138(1)
4.4.2 Telemetry Database
139(6)
4.4.2.1 Database Architecture
139(2)
4.4.2.2 Data Timing
141(1)
4.4.2.3 Database Storage
141(1)
4.4.2.4 Telemetry Processing Levels and Unit Conversion
142(2)
4.4.2.5 Telemetry Packet Processing
144(1)
4.4.3 Telemetry Displays
145(7)
4.4.3.1 Telemetry Data Partitioning
148(2)
4.4.3.2 Telemetry Status Indicators
150(1)
4.4.3.3 Display Interaction with the Telemetry Database
150(1)
4.4.3.4 Balloon Experiment Telemetry Display Example
151(1)
4.4.4 Telecommand Interfaces
152(8)
4.4.4.1 Command Dictionary
153(1)
4.4.4.2 Command Data Input
154(2)
4.4.4.3 Command Processing
156(2)
4.4.4.4 Balloon Experiment Telecommand Interface Example
158(2)
4.5 Payload Computer Systems
160(8)
4.5.1 Payload Command Processing State Diagram
163(1)
4.5.2 Payload Command Processing
164(1)
4.5.3 Payload Telemetry Processing
165(2)
4.5.3.1 Payload Data Master Equipment List
166(1)
4.5.4 Balloon Payload Computing System Example
167(1)
4.6 Secure Communications
168(8)
4.6.1 Operating Modes
171(1)
4.6.2 Cloud Computing
172(2)
4.6.3 Key Management
174(1)
4.6.4 Communications Error Effects
174(1)
4.6.5 Secure Hardware Systems
175(1)
4.6.6 Secure Software Systems
176(1)
4.7 References
176(2)
4.8 Problems
178(3)
Chapter 5 Signal Processing
181(72)
5.1 Introduction
181(1)
5.2 Objectives
182(1)
5.3 Transmitting Sampled Versus Continuous Data
183(5)
5.3.1 Continuous Analog Transmission
183(1)
5.3.2 Multiplexed Analog Transmission
183(2)
5.3.3 Pulse Code Modulation Transmission
185(3)
5.4 Signal Types
188(1)
5.4.1 Pulse Code Modulation Signals
188(1)
5.4.2 Digital Signals
188(1)
5.4.2.1 Bi-level Signals
188(1)
5.4.2.2 Discrete Signals
188(1)
5.5 Bandlimiting
189(10)
5.5.1 Fourier Transforms
189(3)
5.5.1.1 Transform Definition
190(1)
5.5.1.2 Magnitude and Phase Spectra
190(2)
5.5.2 Signal Bandwidth
192(7)
5.5.2.1 Bandlimited Signals
192(2)
5.5.2.2 Essential Bandwidth Definition
194(5)
5.5.3 Signal Bandlimiting Architecture
199(1)
5.6 Sampling
199(6)
5.6.1 Sampling Theorem
201(1)
5.6.2 Oversampling the Nyquist Rate
201(1)
5.6.3 Aliasing
202(3)
5.7 Filter Design
205(18)
5.7.1 Reasons for Filtering
205(1)
5.7.2 Filter Types and Parameters
205(2)
5.7.3 Filter Transfer Functions
207(7)
5.7.3.1 Ideal Filters
207(2)
5.7.3.2 Butterworth Filters
209(1)
5.7.3.3 Chebyshev Filters
210(1)
5.7.3.4 Bessel Filters
211(3)
5.7.4 Analog Filter Design Method
214(9)
5.7.4.1 Low Pass Building Block
215(3)
5.7.4.2 Filter Type Determination
218(1)
5.7.4.3 Filter Order Determination
218(1)
5.7.4.4 Resistor and Capacitor Selection
218(1)
5.7.4.5 Sample LPF Design
219(1)
5.7.4.6 Conversion to High-Pass Design
220(1)
5.7.4.7 Conversion to Band-Pass Design
221(2)
5.8 Software Filter Design
223(4)
5.8.1 Digital Filter Equivalents
223(1)
5.8.2 Data Processing Filtering
224(3)
5.8.2.1 Moving Average Filter
224(1)
5.8.2.2 Moving Least Squares Filter
225(2)
5.9 Quantization
227(6)
5.9.1 Quantization Process
227(2)
5.9.2 Commutation
229(1)
5.9.3 Quantization Noise and Resolution
230(1)
5.9.4 Quantization Signal-to-Noise Ratio
230(2)
5.9.5 Total Transmitted Data
232(1)
5.10 Sampling Hardware
233(8)
5.10.1 Process Timing
233(1)
5.10.2 Sample-and-Hold Amplifiers
234(2)
5.10.3 Analog-to-Digital Converters
236(19)
5.10.3.1 Successive Approximation Converters
236(1)
5.10.3.2 Flash Converters
237(2)
5.10.3.3 Dual Conversion Flash Converters
239(1)
5.10.3.4 Sigma-Delta Analog-to-Digital Conversion
240(1)
5.11 References
241(2)
5.12 Problems
243(10)
Section II: Data Transport, Timing, And Synchronization
Chapter 6 Telemetry Frames And Packets
253(64)
6.1 Introduction
253(1)
6.2 Objectives
254(1)
6.3 Background
255(2)
6.3.1 Context
255(1)
6.3.2 Data Link Layer Packaging
256(1)
6.3.3 Commutation
256(1)
6.4 Telemetry Frames
257(13)
6.4.1 Inter-Range Instrumentation Group Frame Definitions
257(6)
6.4.1.1 Minor Frame
258(1)
6.4.1.2 Major Frame
259(2)
6.4.1.3 Commutated Data
261(1)
6.4.1.4 Supercommutated Data
261(1)
6.4.1.5 Subframes and Subcommutated Data
261(2)
6.4.1.6 Supersubcommutated Data
263(1)
6.4.2 Frame Examples
263(3)
6.4.3 Inter-Range Instrumentation Group Class I and Class II Telemetry
266(6)
6.4.3.1 Standard Parameters
266(1)
6.4.3.2 Format Changes
267(1)
6.4.3.3 Asynchronous Embedded Format
268(1)
6.4.3.4 Tagged Data
269(1)
6.5 Synchronization Codes
270(2)
6.6 Telemetry Frame Design
272(4)
6.6.1 General Factors
272(2)
6.6.2 Management and Accounting Information
274(1)
6.6.3 Data Packaging
274(2)
6.7 Packet Telemetry
276(8)
6.7.1 Packet Assumptions
276(2)
6.7.2 Protocol Data Unit Format
278(1)
6.7.3 Packet Modes
279(5)
6.7.3.1 Commutated Mode
280(1)
6.7.3.2 Entropy Mode
280(2)
6.7.3.3 Virtual Channel Mode
282(1)
6.7.3.4 Table Driven Format
283(1)
6.8 MIL-STD-1553 Packets
284(3)
6.8.1 Inter-Range Instrumentation Group 106 Modifications
285(2)
6.9 CCSDS Packets
287(5)
6.10 Data Networking Packets
292(8)
6.10.1 Background
292(1)
6.10.2 Packet Formats
293(1)
6.10.3 Data Servers
294(1)
6.10.4 Data Throughput Issues
295(1)
6.10.5 Inter-Range Instrumentation Group 106 Packet Encapsulation
296(2)
6.10.6 Telemetry Data Streaming
298(2)
6.11 Command Processor Interface
300(1)
6.12 Data Waveform Formatting For Transmission
300(9)
6.12.1 General Structure
301(1)
6.12.2 Data Randomizers
301(1)
6.12.3 Data Format Specification
302(2)
6.12.4 Data Format Generation
304(1)
6.12.5 Inter-Range Instrumentation Group Differential Encoding
305(1)
6.12.6 Usage Characteristics
306(3)
6.13 References
309(4)
6.14 Problems
313(4)
Chapter 7 Data Synchronization
317(40)
7.1 Introduction
317(1)
7.2 Objectives
318(1)
7.3 Synchronization Process
319(1)
7.4 Carrier Synchronization
320(1)
7.5 Bit Synchronization
320(7)
7.5.1 General Functions
321(2)
7.5.2 Data Clock Extraction
323(2)
7.5.2.1 Open-Loop Clock Extractors
323(1)
7.5.2.2 Closed-Loop Clock Extractors
324(1)
7.5.3 Data Formats
325(1)
7.5.4 Derandomizer
326(1)
7.6 Protocol Data Unit Synchronization
327(10)
7.6.1 Telemetry Frame Synchronization
327(4)
7.6.1.1 Search State
327(3)
7.6.1.2 Check State
330(1)
7.6.1.3 Lock State
330(1)
7.6.2 Packet Synchronization
331(3)
7.6.3 Network Synchronization
334(1)
7.6.4 Statistical Measures
334(3)
7.6.4.1 False Lock Probability
334(2)
7.6.4.2 Missed Synchronization Probability
336(1)
7.7 Channel Error Detection
337(12)
7.7.1 Probability of Error
338(1)
7.7.2 Post-Processing Error Correction
339(1)
7.7.3 Error Detection and Correcting Codes
340(6)
7.7.3.1 Error Detection Codes
340(1)
7.7.3.2 Block Error Correction Codes
341(4)
7.7.3.3 Convolutional Codes
345(1)
7.7.3.4 Concatenated Codes
346(1)
7.7.4 Channel Improvement
346(1)
7.7.5 Coding Gain
347(2)
7.8 Data Sequencing
349(3)
7.9 References
352(1)
7.10 Problems
353(4)
Chapter 8 Time And Position Determination
357(40)
8.1 Introduction
357(2)
8.2 Objectives
359(1)
8.3 Definition Of Time
359(5)
8.3.1 Absolute Time
360(3)
8.3.1.1 International Atomic Time
361(1)
8.3.1.2 Sidereal Time
361(1)
8.3.1.3 Terrestrial Time
361(1)
8.3.1.4 Coordinated Universal Time
361(1)
8.3.1.5 Julian Date
362(1)
8.3.2 Elapsed Time
363(1)
8.4 Time Code Formats
364(18)
8.4.1 International Organization for Standardization
364(2)
8.4.2 Inter-Range Instrumentation Group
366(9)
8.4.2.1 Inter-Range Instrumentation Group Time Frame Formats
366(6)
8.4.2.2 Inter-Range Instrumentation Group Pulse Code Modulation Timing Word Format
372(3)
8.4.2.3 Inter-Range Instrumentation Group MIL-STD-1553 Time Formats
375(1)
8.4.3 National Institute of Standards and Technology
375(5)
8.4.4 Consultative Committee for Space Data Systems
380(2)
8.5 Global Positioning System Time And Position
382(10)
8.5.1 Global Positioning System Definition
383(2)
8.5.2 Time and Position Determination
385(4)
8.5.3 National Marine Electronics Association Navigation Sentences
389(3)
8.6 References
392(3)
8.7 Problems
395(2)
Chapter 9 Telecommand Transmission Systems
397(36)
9.1 Introduction
397(2)
9.2 Objectives
399(1)
9.3 Command Composition
399(5)
9.4 Command Transmission Strategies
404(6)
9.4.1 Repeat-and-Execute Command Protocol
406(1)
9.4.2 Verify-and-Execute Command Protocol
407(1)
9.4.3 Open-Loop Command Protocol
407(1)
9.4.4 Command Packaging Examples
408(2)
9.5 Operational Considerations
410(13)
9.5.1 Command Synchronization
410(2)
9.5.2 Command Verification
412(2)
9.5.3 Subsystem Command Rates
414(1)
9.5.4 Pre-event Commanding
414(1)
9.5.5 Command Counters
415(2)
9.5.6 Command Files
417(1)
9.5.7 Command Error Rates
417(5)
9.5.7.1 Command Reception Error Probability
417(2)
9.5.7.2 Parity Error Detection Strategies
419(1)
9.5.7.3 Repeat Command Strategies
420(2)
9.5.8 Command Security
422(1)
9.6 Packet Command Systems
423(2)
9.7 References
425(1)
9.8 Problems
425(8)
Section III: Data Transmission Techniques
Chapter 10 Modulation Techniques
433(64)
10.1 Introduction
433(2)
10.2 Objectives
435(1)
10.3 Analog Modulation
435(13)
10.3.1 Phase and Frequency Definition
436(1)
10.3.2 Frequency Modulation
437(4)
10.3.3 Phase Modulation
441(3)
10.3.4 Signal-to-Noise Performance
444(2)
10.3.5 Relative Performance of FM and PM
446(2)
10.4 Digital Modulation
448(21)
10.4.1 Phase Shift Keying
449(6)
10.4.1.1 Binary Phase Shift Keying and Quadrature Phase Shift Keying
449(4)
10.4.1.2 Offset Quadrature Phase Shift Keying or Staggered Quadrature Phase Shift Keying
453(2)
10.4.2 Frequency Shift Keying
455(2)
10.4.3 Pulse-Shaped Modulation Techniques
457(3)
10.4.3.1 Minimum Shift Keying and Gaussian Minimum Shift Keying
457(2)
10.4.3.2 Shaped Offset Quadrature Phase Shift Keying
459(1)
10.4.4 Quadrature Amplitude Modulation
460(3)
10.4.5 Subcarrier Modulation
463(2)
10.4.6 Bit Error Rate Performance
465(4)
10.5 Bandwidth Estimates
469(8)
10.5.1 Analog Bandwidth
469(1)
10.5.2 Digital Bandwidth
470(4)
10.5.2.1 Phase Shift Keying
471(1)
10.5.2.2 Frequency Shift Keying
472(2)
10.5.2.3 Minimum Shift Keying, Gaussian Minimum Shift Keying, and Shaped Offset Quadrature Phase Shift Keying
474(1)
10.5.2.4 Quadrature Amplitude Modulation
474(1)
10.5.3 Spectrum Control Issues
474(3)
10.6 System Planning
477(13)
10.6.1 Telemetry Frequency Allocations
478(5)
10.6.1.1 Telemetry Stations and Services
479(3)
10.6.1.2 Band Sharing
482(1)
10.6.1.3 Matched Bands
483(1)
10.6.2 Emission Standards
483(3)
10.6.2.1 Necessary Bandwidth
483(1)
10.6.2.2 Spectral Masks
484(2)
10.6.3 Intermodulation Effects
486(1)
10.6.4 Unequal Data Rates
487(1)
10.6.5 Spectral Regrowth
488(2)
10.7 Digital Over Analog Transmission
490(1)
10.8 References
491(3)
10.9 Problems
494(3)
Chapter 11 Microwave Transmission
497(84)
11.1 Introduction
497(2)
11.2 Objectives
499(1)
11.3 Background
500(5)
11.3.1 Microwave Bands
500(1)
11.3.2 Structure of the Atmosphere
501(2)
11.3.3 Radio Propagation Modes
503(2)
11.3.4 Band Characteristics
505(1)
11.4 Radio Frequency Devices
505(18)
11.4.1 Transmitters and Receivers
506(3)
11.4.2 Radio Frequency Components
509(4)
11.4.2.1 Radio Frequency Cabling
509(1)
11.4.2.2 Active and Passive Devices
509(4)
11.4.3 Antennas
513(8)
11.4.3.1 Antenna Types
514(1)
11.4.3.2 Antenna Radiation Pattern
514(3)
11.4.3.3 Antenna Gain
517(3)
11.4.3.4 Target Tracking
520(1)
11.4.4 Software Defined Radio
521(2)
11.5 Free Space Propagation
523(20)
11.5.1 Friis Transmission Relationship
524(2)
11.5.2 Space Loss
526(1)
11.5.3 Noise Temperature
526(9)
11.5.3.1 Two-port model
528(1)
11.5.3.2 Effective Temperature Computation
529(1)
11.5.3.3 Antenna Temperature Computation
530(1)
11.5.3.4 System Temperature Computation
531(4)
11.5.4 Signal Margin
535(1)
11.5.5 Link Analysis
536(7)
11.6 Atmospheric, Sun, And Ground Propagation Effects
543(10)
11.6.1 Gaseous Attenuation
543(1)
11.6.2 Refraction
544(2)
11.6.3 Diffraction
546(3)
11.6.4 General Terrain Fade Margin
549(1)
11.6.5 Scintillation
550(2)
11.6.6 Sun Intrusions
552(1)
11.7 Rain Effects Modeling
553(10)
11.7.1 Rain Effects
553(3)
11.7.2 International Telecommunications Union Model
556(6)
11.7.2.1 Satellite Link Path Attenuation
557(4)
11.7.2.2 Terrestrial Link Path Attenuation
561(1)
11.7.3 Antenna Wetting
562(1)
11.8 Mobile Propagation
563(8)
11.8.1 Channel Geometry
563(1)
11.8.2 Two-ray Model
564(3)
11.8.3 Multiple-ray Model
567(1)
11.8.4 Doppler Shifts
567(3)
11.8.5 Link Planning
570(1)
11.9 References
571(5)
11.10 Problems
576(5)
Appendix A: Acronyms, Abbreviations, and Symbols 581(14)
A.1 Acronyms And Abbreviations
581(7)
A.2 Functions, Symbols, Units, And Variables
588(7)
Appendix B: Supporting Tables 595(6)
Index 601
Stephen Horan, Ph.D. is an electronics engineer with the National Aeronautics and Space Administrations Langley Research Center. Dr. Horan joined Langley in 2009 as a spacecraft communications lead for satellite and hosted payload concepts. He has also served as the Branch head for the Remote Sensing Flight Systems Branch. Starting in August 2013, he became the Principal Technologist for Avionics in NASAs Space Technology Mission Directorate. Dr. Horan is also a Professor Emeritus at New Mexico State University where he held the Frank Carden endowed chair in Telemetering and Telecommunications from 1996 to 2009 when he retired as a Professor and Department Head in the Klipsch School of Electrical and Computer Engineering. At NMSU, he developed the graduate telemetering systems course at the Klipsch School and the industry short course upon which this text is based. He taught other courses in communications systems and was the principal investigator on several telemetry and telecommunications projects at NMSU. Dr. Horan received his A.B. in physics from Franklin and Marshall College, and his M.S. in astronomy, M.S.E.E., and Ph.D. in electrical engineering from New Mexico State University. Dr. Horans research focus was in the area of space communications under the support of NASA and the Air Force, including leading the development of the communications system for the 3 Corner Satellite and the NMSUSat nanosatellite projects. Prior to joining the NMSU faculty, Dr. Horan was with Space Communications Company (now part of General Dynamics) working in the areas of satellite telemetry and telecommand systems, operator interfaces, and systems engineering at NASAs White Sands Ground Terminal. Dr. Horan is a senior member of the IEEE and AIAA. He also holds amateur radio license NM4SH. He has been a NASA/ASEE Summer Faculty Fellow at Johnson Space Center and Goddard Space Flight Center.