Atnaujinkite slapukų nuostatas

Introduction to Piecewise Smooth Dynamics 2019 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 129 pages, aukštis x plotis: 240x168 mm, weight: 454 g, 8 Illustrations, color; 50 Illustrations, black and white; VII, 129 p. 58 illus., 8 illus. in color., 1 Paperback / softback
  • Serija: Advanced Courses in Mathematics - CRM Barcelona
  • Išleidimo metai: 01-Nov-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030236889
  • ISBN-13: 9783030236885
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 129 pages, aukštis x plotis: 240x168 mm, weight: 454 g, 8 Illustrations, color; 50 Illustrations, black and white; VII, 129 p. 58 illus., 8 illus. in color., 1 Paperback / softback
  • Serija: Advanced Courses in Mathematics - CRM Barcelona
  • Išleidimo metai: 01-Nov-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030236889
  • ISBN-13: 9783030236885
Kitos knygos pagal šią temą:

This book is aimed at mathematicians, scientists, and engineers, studying models that involve a discontinuity, or studying the theory of nonsmooth systems for its own sake. It is divided in two complementary courses: piecewise smooth flows and maps, respectively. Starting from well known theoretical results, the authors bring the reader into the latest challenges in the field, going through stability analysis, bifurcation, singularities, decomposition theorems and an introduction to kneading theory. Both courses contain many examples which illustrate the theoretical concepts that are introduced. 

Introduction 1(2)
1 Piecewise-smooth Flows
3(52)
Mike R. Jeffrey
1.1 Introduction
3(4)
1.2 History and applications
7(3)
1.3 Inclusions and combinations
10(5)
1.4 Types of dynamics
15(8)
1.5 Switching layers
23(7)
1.6 Multiple switches
30(2)
1.7 Codimension r switching layers
32(1)
1.8 Codimension r sliding
33(3)
1.9 Boundary equilibrium bifurcations
36(2)
1.10 Stability, equivalence, and bifurcation
38(4)
1.11 Discontinuity-induced phenomena
42(7)
1.12 Determinacy-breaking
49(1)
1.13 Hidden attractors
50(1)
1.14 Hidden bifurcations
51(1)
1.15 Moving forward
52(3)
2 Piecewise-smooth Maps
55(68)
Paul Glendinning
2.1 Introduction to maps
55(5)
2.2 Smooth theory
60(9)
2.3 Piecewise-smooth maps of the interval
69(14)
2.4 Lorenz maps and rotations
83(8)
2.5 Gluing bifurcations
91(6)
2.6 Piecewise-smooth maps of the plane
97(5)
2.7 Periodic orbits and resonance
102(6)
2.8 Robust chaos
108(6)
2.9 Two-dimensional attractors
114(5)
2.10 Challenges
119(4)
Bibliography 123
Dr Mike Jeffrey is a Senior Lecturer at the University of Bristol in the United Kingdom.

Paul Glendinning is a Professor of Applied Mathematics at the University of Manchester in the United Kingdom.