Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Plastics Engineering

  • Formatas: PDF+DRM
  • Serija: Wiley-ASME Press Series
  • Išleidimo metai: 01-Apr-2020
  • Leidėjas: Wiley-ASME Press
  • Kalba: eng
  • ISBN-13: 9781119536543
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Wiley-ASME Press Series
  • Išleidimo metai: 01-Apr-2020
  • Leidėjas: Wiley-ASME Press
  • Kalba: eng
  • ISBN-13: 9781119536543
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The authoritative introduction to all aspects of plastics engineering — offering both academic and industry perspectives in one complete volume. 

Introduction to Plastics Engineering provides a self-contained introduction to plastics engineering. A unique synergistic approach explores all aspects of material use — concepts, mechanics, materials, part design, part fabrication, and assembly — required for converting plastic materials, mainly in the form of small pellets, into useful products. Thermoplastics, thermosets, elastomers, and advanced composites, the four disparate application areas of polymers normally treated as separate subjects, are covered together.

Divided into five parts — Concepts, Mechanics, Materials, Part Processing and Assembly, and Material Systems — this inclusive volume enables readers to gain a well-rounded, foundational knowledge of plastics engineering. Chapters cover topics including the structure of polymers, how concepts from polymer physics explain the macro behavior of plastics, evolving concepts for plastics use, simple mechanics principles and their role in plastics engineering, models for the behavior of solids and fluids, and the mechanisms underlying the stiffening of plastics by embedded fibers. Drawing from his over fifty years in both academia and industry, Author Vijay Stokes uses the synergy between fundamentals and applications to provide a more meaningful introduction to plastics.

  • Examines every facet of plastics engineering from materials and fabrication methods to advanced composites
  • Provides accurate, up-to-date information for students and engineers both new to plastics and highly experienced with them
  • Offers a practical guide to large number of materials and their applications
  • Addresses current issues for mechanical design, part performance, and part fabrication 

Introduction to Plastics Engineering is an ideal text for practicing engineers, researchers, and students in mechanical and plastics engineering and related industries.

Recenzijos

Although Author Dr. Vijay Stokes humbly includes introduction in the book title, the treatment in this book is quite extensive and inclusive, with 25 chapters and over 1000 pages. This volume essentially contains every facet of plastics engineering from materials and fabrication methods to advanced composites. It endorses a unique synergistic approach to implementing the ideas of mechanistic principles and polymer physics to practical applications of polymers and composites. Engineers are natural readers of this book. In this book, concepts from polymer physics explain the macro behavior of plastics, including deformation, flow and rheology, which are of vital importance in design and fabrication with plastics. Engineers would therefore learn the new tool sets to tailor plastics in various engineering applications. Materials scientists who have an interest in applications of polymers would greatly benefit from this book as well. The book also contains detailed derivations and design analysis and may be used as a textbook for college seniors or students at an introductory graduate level. --Professor Donggang Yao, Journal of Manufacturing Science and Engineering  The book, Introduction of Plastics Engineering, is a great resource both for students beginning to learn about plastics, and for practicing engineers trying to clarify concepts unique to polymers. The author writes that he started working on plastics in mid career;the learning process he went through is reflected in how he has organized the material in the over 1000 pages in this book. It works. As a reviewer who has worked with polymers for almost four decades, I give this book high marks. --Professor Tim A. Osswald, International Polymer Processing

Overall, this is an important addition to the plastics engineering series available in the market. While most books on plastics engineering emphasize materials' aspects and most design books are based on mechanical engineering concepts, this book uses mechanics based engineering principles to understand plastics engineering. Hence, the book covers the existing gap. The principles are discussed with basic knowledge of mathematics and easy to follow. --Professor Anil K. Bhowmick, AIChE Journal

This expansive 1000-page book authored by Professor Stokes is certainly a great addition to the bookshelves of both practicing plastics engineers and academics Each chapter of the book has been put together meticulously and thoughtfully with informative illustrations, mechanics-based models, and empirical data. With many chapters of the book containing authors own works besides others, the monograph is very authentic and I strongly recommend it as a textbook and research monograph. --Professor Hareesh Tippur, Journal of Engineering Materials and Technology

 

Series Preface xxix
Preface xxxi
PART I INTRODUCTION: Outlines for
Chapters 1 and 2
1(94)
1 Introductory Survey
3(32)
1.1 Background
3(1)
1.2 Synergy Between Materials Science and Engineering
4(3)
1.3 Plastics Engineering as a Process (the Plastics Engineering Process)
7(2)
1.4 Types of Plastics
9(2)
1.4.1 Plastic Composites
9(1)
1.4.2 Recycling of Plastics
10(1)
1.5 Material Characteristics Determine Part Shapes
11(16)
1.5.1 Stone as a Building Material
11(1)
1.5.1.1 The Early Use of Stone
11(3)
1.5.1.2 The Invention of the Arch
14(1)
1.5.1.3 Vaults and Domes
14(5)
1.5.1.4 Summary Comments
19(1)
1.5.2 Cast Iron as a Building Material
19(1)
1.5.3 Steel as a Building Material
20(1)
1.5.3.1 Summary Comments
20(1)
1.5.4 Shape Synthesis for Plastic Parts
21(1)
1.5.4.1 Part Complexity and Consolidation
22(2)
1.5.4.2 Plastic Hinges
24(3)
1.5.4.3 Summary Comments
27(1)
1.6 Part Fabrication (Part Processing)
27(1)
1.7 Part Performance
28(4)
1.7.1 The Role of Numerical Methods
29(2)
1.7.2 Rapid Prototyping
31(1)
1.8 Assembly
32(1)
1.9 Concluding Remarks
33(2)
2 Evolving Applications of Plastics
35(60)
2.1 Introduction
35(1)
2.2 Consumer Applications
36(1)
2.2.1 Clothing
36(1)
2.2.1.1 Protective Clothing for Firefighters
36(1)
2.2 A.2 Bulletproof Clothing
37(30)
2.2.1.3 Hook-and-Loop Fasteners
39(3)
2.2.2 Shoes
42(1)
2.2.2.1 Athletic Shoes
42(2)
2.2.2.2 Firefighters' Boots
44(2)
2.2.3 Toothbrushes
46(2)
2.2.4 Disposable Razors
48(1)
2.2.5 Eyewear
49(2)
2.2.6 Contact Lenses
51(1)
2.2.7 Bottle Caps
51(2)
2.2.8 Drip-Proof Spouts
53(1)
2.2.9 Plastic Tops for Paper Containers
53(1)
2.2.9.1 Plastic Tops for Cardboard Salt Containers
54(1)
2.2.9.2 Plastic Tops for Paper Juice Cartons
54(2)
2.2.10 Toys
56(1)
2.2.11 Consumer Audio
57(1)
2.2.11.1 Recording Media
58(2)
2.2.11.2 Audio Systems
60(5)
2.2.12 Vacuum Cleaners
65(1)
2.2.13 Small and Major Appliances
65(2)
2.3 Medical Applications
67(3)
2.3.1 Drip Bags and Accessories
67(1)
2.3.2 Syringes
68(1)
2.3.3 Medical Imaging Equipment
69(1)
2.3.4 Plastic Models for Body Parts
70(1)
2.4 Automotive Applications
70(7)
2.4.1 Bumpers
71(1)
2.4.2 Fenders
72(1)
2.4.3 Throttle Bodies
72(1)
2.4.4 Exhaust Manifolds
73(1)
2.4.5 Gas Tanks
74(1)
2.4.6 Door Modules
75(1)
2.4.7 Boots for Constant-Velocity Joints
76(1)
2.5 Infrastructure Applications
77(11)
2.5.1 Glazing
77(1)
2.5.2 Security Glazing
78(1)
2.5.3 Water Management Systems
79(4)
2.5.4 Large-Diameter Piping
83(1)
2.5.5 Power Line Poles
84(2)
2.5.6 Bridges
86(1)
2.5.7 Composite Sheet Piling
86(2)
2.6 Wind Energy
88(2)
2.7 Airline Applications
90(1)
2.8 Oil Extraction
91(1)
2.9 Mining
92(1)
2.10 Concluding Remarks
93(2)
PART II MECHANICS: Outlines for
Chapters 3 through 8
95(120)
3 Introduction to Stress and Deformation
97(10)
3.1 Introduction
97(1)
3.2 Simple Measures for Load Transfer and Deformation
97(2)
3.3 *Strains as Displacement Gradients
99(2)
3.4 *Coupling Between Normal and Shear Stresses
101(1)
3.5 *Coupling Between Normal and Shear Strains
102(1)
3.6 **Two-Dimensional Stress
103(2)
3.7 Concluding Remarks
105(2)
4 Models for Solid Materials
107(12)
4.1 Introduction
107(1)
4.2 Simple Models for the Mechanical Behavior of Solids
107(1)
4.3 Elastic Materials
108(1)
4.4 *Anisotropic Materials
109(2)
4.4.1 *Orthotropic Materials
109(2)
4.5 Thermoelastic Effects
111(2)
4.6 Plasticity
113(3)
4.7 Concluding Remarks
116(3)
5 Simple Structural Elements
119(28)
5.1 Introduction
119(1)
5.2 Bending of Beams
119(4)
5.3 Deflection of Prismatic Beams
123(1)
5.3.1 Deflection of a Cantilever Due to an End Load
123(1)
5.3.2 Deflection of a Simply Supported Beam Due to a Central Load
124(1)
5.3.3 Deflection of a Simply Supported Beam Due to a Noncentral Load
125(2)
5.4 Torsion of Thin-Walled Circular Tubes
127(2)
5.5 Torsion of Thin Rectangular Bars and Open Sections
129(1)
5.6 Torsion of Thin-Walled Tubes
130(1)
5.7 Torsion of Multicellular Sections
131(2)
5.8 Introduction to Elastic Stability
133(5)
5.8.1 Concept of Stability
133(1)
5.8.2 Stability of a Hinged Rigid Bar
134(2)
5.8.3 *Spring-Supported Rigid Bar: Stability Above the Critical Load
136(2)
5.9 *Elastic Stability of an Axially Loaded Column
138(4)
5.9.1 Buckling Load for a Pin-Jointed Column
139(1)
5.9.2 Buckling of a Column Fixed at One End
140(2)
5.10 Twist-Bend Buckling of a Cantilever
142(1)
5.11 Stress Concentration
142(3)
5.12 The Role of Numerical Methods
145(1)
5.13 Concluding Remarks
145(2)
6 Models for Liquids
147(28)
6.1 Introduction
147(1)
6.2 Simple Models for Heat Conduction
147(2)
6.2.1 Steady-State Heat Conduction
148(1)
6.2.2 Transient Heat Conduction
149(1)
6.3 Kinematics of Fluid Flow
149(2)
6.3.1 Measures for Deformation Rates
150(1)
6.4 Equations Governing One-Dimensional Fluid Flow
151(6)
6.4.1 One-Dimensional Continuity Equation
152(1)
6.4.2 Balance of Linear Momentum in One Dimension
153(1)
6.4.3 *Energy Balance in One Dimension
154(3)
6.5 Simple Models for the Mechanical Behavior of Liquids
157(2)
6.5.1 Newtonian Liquids
157(1)
6.5.2 Non-Newtonian Liquids
157(1)
6.5.3 Temperature-Dependent Viscosity Models
158(1)
6.6 Simple One-Dimensional Flows
159(12)
6.6.1 Surface-Driven One-Dimensional Steady Flow
159(1)
6.6.2 Heat Generation in One-Dimensional Couette Flow
160(1)
6.6.3 *One-Dimensional Couette Flow with Temperature-Dependent Viscosity
161(1)
6.6.3.1 Linear Variation of Viscosity with Temperature
161(1)
6.6.4 *Development of Couette Flow
162(1)
6.6.5 Pressure-Driven One-Dimensional Steady Flow
162(2)
6.6.6 Pressure-Driven Radial Flow
164(1)
6.6.6.1 Continuity Equation for Radial Flow
165(1)
6.6.6.2 Balance of Linear Momentum in Radial Flow
166(2)
6.6.6.3 Incompressible Newtonian Radial Flow
168(3)
6.7 Polymer Rheology
171(2)
6.7.1 Die Swell
171(1)
6.7.2 Tubeless Siphon
172(1)
6.7.3 Vibration of a Ball Dropped in a Liquid
172(3)
6.7.4 Weissenberg Effect
175(1)
6.8 Concluding Remarks
175(1)
7 Linear Viscoelasticity
175(1)
7.1 Introduction
175(1)
7.2 Phenomenology of Viscoelasticity
176(3)
7.2.1 Stress Relaxation
176(1)
7.2.2 Creep
176(3)
7.3 Linear Viscoelasticity
179(3)
7.3.1 Constitutive Equations
180(1)
7.3.2 Stress-Relaxation Integral Form
181(1)
7.3.3 Creep Integral Form
181(1)
7.3.4 *Relationship Between the Relaxation Modulus and the Creep Compliance
181(1)
7.4 Simple Models for Stress Relaxation and Creep
182(7)
7.4.1 Continuum Elastic Element (Elastic Spring)
183(1)
7.4.2 Continuum Viscous Element (Dashpot)
183(1)
7.4.3 Maxwell Model
184(1)
7.4.3.1 Stress Relaxation
185(1)
7.4.3.2 Creep
185(1)
7.4.4 Kelvin-Voigt Model
185(1)
7.4.4.1 Stress Relaxation
186(1)
7.4.4.2 Creep
187(1)
7.4.5 Standard Three-Parameter Model
187(2)
7.5 Response for Constant Strain Rates
189(1)
7.5.1 Maxwell Model
189(1)
7.5.2 Kelvin-Voigt Model
190(1)
7.5.3 Standard Three-Parameter Model
190(1)
7.6 *Sinusoidal Shearing
190(3)
7.6.1 Dynamic Mechanical Analysis (DMA)
191(1)
7.6.1.1 DMA Curves for Three-Parameter Model
192(1)
7.6.2 *Energy Storage and Loss
192(1)
7.7 Isothermal Temperature Effects
193(2)
7.7.1 Thermorheologically Simple Materials
194(1)
7.7.2 Physical Interpretation for Time-Temperature Shift
195(1)
7.8 *Variable Temperature Histories
195(1)
7.9 *Cooling of a Constrained Bar
196(1)
7.10 Concluding Remarks
196(3)
8 Stiffening Mechanisms
199(16)
8.1 Introduction
199(1)
8.2 Continuous Fiber Reinforcement
199(4)
8.2.1 Fiber-Matrix Interphase
202(1)
8.3 Discontinuous Fiber Reinforcement
203(8)
8.3.1 Load Transfer in a Discontinuous Fiber
203(5)
8.3.2 Discontinuous Fiber Composite
208(1)
8.3.3 Reinforcing Fillers
209(1)
8.3.3.1 Spherical Fillers
209(1)
8.3.3.2 Cylindrical Fillers
210(1)
8.4 The Halpin-Tsai Equations
211(1)
8.5 Reinforcing Materials
211(1)
8.5.1 Continuous Fibers
211(1)
8.5.2 Chopped Fibers
212(1)
8.5.3 Flakes
212(1)
8.5.4 Particulates
212(1)
8.5.5 Rubber Toughening
212(3)
8.6 Concluding Remarks
215(1)
Further Reading
215(1)
PART III MATERIALS: Outlines for
Chapters 9 through 15
215(206)
9 Introduction to Polymers
217(12)
9.1 Introduction
217(1)
9.2 Thermoplastics
217(9)
9.2.1 Polyethylene
217(1)
9.2.1.1 Linear Polyethylene
218(2)
9.2.1.2 Branched Polyethylene
220(1)
9.2.2 Polypropylene
221(1)
9.2.2.1 Tacticity
221(2)
9.2.3 Cis and Trans Isomers
223(1)
9.2.4 Polyisoprene
223(1)
9.2.5 Homopolymers and Copolymers
224(2)
9.2.6 Chain Entanglement
226(1)
9.3 Molecular Weight Distributions
226(1)
9.4 Thermosets
227(1)
9.4.1 Phenolics
227(1)
9.4.2 Elastomers
227(1)
9.5 Concluding Remarks
227(2)
10 Concepts from Polymer Physics
229(18)
10.1 Introduction
229(1)
10.2 Chain Conformations
229(5)
10.2.1 *Freely Jointed Chain Models
230(1)
10.2.2 *Effect of Bond Angle Restriction
231(1)
10.2.3 * Effect of Steric Restrictions
232(2)
10.3 Amorphous Polymers
234(6)
10.3.1 Phenomenology of the Glass Transition
234(2)
10.3.2 Physical Aging
236(1)
10.3.3 Concept of Free Volume
236(2)
10.3.4 Effect of Pressure on Glass Transition
238(1)
10.3.5 Effect of Chemical Structure on Glass Transition
239(1)
10.3.6 Effect of Molecular Weight on Glass Transition
240(1)
10.4 Semicrystalline Polymers
240(3)
10.4.1 Structure of Polymer Crystals
240(2)
10.4.2 Melting Phenomenology of Semicrystalline Polymers
242(1)
10.4.3 Degree of Crystallinity
242(1)
10.5 Liquid Crystal Polymers
243(2)
10.5.1 Liquid Crystal Phases and Transitions
244(1)
10.5.2 Polymer Liquid Crystals
245(1)
10.6 Concluding Remarks
245(2)
11 Structure, Properties, and Applications of Plastics
247(30)
11.1 Introduction
247(1)
11.2 Resin Grades
248(1)
11.3 Additives and Modifiers
248(3)
11.3.1 Stabilizers
248(1)
11.3.1.1 UV Stabilizers
249(1)
11.3.1.2 Antioxidants
249(1)
11.3.1.3 Thermal Stabilizers
249(1)
11.3.1.4 Fire Retardants
249(1)
11.3.2 Modifiers
250(1)
11.3.2.1 Colorants
250(1)
11.3.2.2 Fillers
250(1)
11.3.2.3 Reinforcing Fibers
250(1)
11.3.2.4 Impact Modifiers
251(1)
11.3.2.5 Lubricants
251(1)
11.3.2.6 Plasticizers
251(1)
11.4 Polyolefins
251(3)
11.4.1 Polyethylene
251(2)
11.4.1.1 High-Strength Polyethylene Fibers
253(1)
11.4.2 Polypropylene
253(1)
11.4.3 Polybutylene
254(1)
11.5 Vinyl Polymers
254(4)
11.5.1 Polyvinyl Chloride)
254(1)
11.5.1.1 Plastisol
255(1)
11.5.2 Polyacrylonitrile
255(1)
11.5.3 Polystyrene
256(1)
11.5.3.1 Poly(Styrene-co-Acrylonitrile) (SAN)
256(1)
11.5.3.2 Poly(Styrene-co-Maleic Anhydride) (SMA)
257(1)
11.5.4 Poly(Methyl Methacrylate)
257(1)
11.5.5 Poly(Ethylene-co-Vinyl Alcohol)
257(1)
11.6 High-Performance Polymers
258(7)
11.6.1 Polyoxymethylene
258(1)
11.6.2 Poly(Phenylene Oxide)
259(1)
11.6.3 Polyesters
259(1)
11.6.4 Polycarbonate
260(1)
11.6.5 Polyamides
261(1)
11.6.5.1 Semicrystalline Polyamides
261(1)
11.6.5.2 Amorphous Polyamides
262(1)
11.6.6 Fluoropolymers
263(1)
11.6.6.1 Copolymers of Fluoropolymers
264(1)
11.7 High-Temperature Polymers
265(12)
11.7.1 Poly(Phenylene Sulfide)
265(1)
11.7.2 Polyetherimide
266(1)
11.7.3 Poly(Amide-Imide)
266(1)
11.7.4 Polysulfones
267(1)
11.7.4.1 Polysulfone
267(1)
11.7.4.2 Polyethersulfone
268(1)
11.7.4.3 Polyphenylsulfone (Polyarylethersulfone)
268(1)
11.7.5 Polyketones
268(1)
11.7.6 Liquid Crystalline Polyesters
269(1)
11.7.7 Aromatic Polyamides (Aramids)
270(1)
11.7.8 Polybenzimidazole
271(1)
11.8 Cyclic Polymers
271(1)
11.9 Thermoplastic Elastomers
272(1)
11.9.1 Polypropylene-EPDM TPE
272(1)
11.9.2 Thermoplastic Copolyester TPE
272(1)
11.9.3 Thermoplastic Urethane (TPU)
273(1)
11.10 Historical Notes
273(1)
11.11 Concluding Remarks
274(3)
12 Blends and Alloys
277(8)
12.1 Introduction
277(1)
12.2 Blends
278(4)
12.2.1 Acrylonitrile-Butadiene-Styrene
278(1)
12.2.2 Acrylonitrile-Styrene-Acrylate
279(1)
12.2.3 ABS/PVC Blends
279(1)
12.2.4 Nylon/ABS Blends
279(1)
12.2.5 Polycarbonate/ABS Blends
279(1)
12.2.6 Poly(Phenylene Oxide)/Polystyrene Blends
280(1)
12.2.7 Polycarbonate/PBT Blends
280(1)
12.2.8 Nylon/PPO Blends
281(1)
12.2.9 High-Temperature Blends
281(1)
12.3 Historical Notes
282(1)
12.4 Concluding Remarks
282(3)
13 Thermoset Materials
285(28)
13.1 Introduction
285(1)
13.2 Thermosetting Resins
285(11)
13.2.1 Phenolics
286(1)
13.2.1.1 Resole Resins
287(1)
13.2.1.2 Novolak Resins
287(1)
13.2.1.3 Applications of Phenolics
288(1)
13.2.2 Urea-Aldehyde-Based Resins
288(1)
13.2.2.1 Urea-Formaldehyde-Based Resin
288(1)
2.2.2 Melamine-Aldehyde-Based Resins
289(2)
13.2.2.3 Applications of Urea-and Melamine-Aldehyde Resins
291(1)
13.2.3 Allyl Diglycol Carbonate (CR-39)
291(1)
13.2.4 Thermosetting Polyesters
291(2)
13.2.5 Vinyl Esters
293(1)
13.2.5.1 Applications of Polyesters and Vinyl Esters
293(1)
13.2.6 Epoxies
293(1)
13.2.6.1 Applications of Epoxies
294(1)
13.2.7 Sheet and Bulk Molding Compounds
294(1)
13.2.8 Polyurethanes
295(1)
13.2.8.1 Applications of Polyurethanes
296(1)
13.3 High-Temperature Thermosets
296(8)
13.3.1 Cyanate Esters
296(4)
13.3.2 Bismaleimides
300(2)
13.3.3 Polyimides
302(1)
13.3.3.1 PMR-15
302(1)
13.3.3.2 LaRCRP-46
303(1)
13.3.4 Poly(Phenylene Benzobisoxazole)
303(1)
13.4 Thermoset Elastomers
304(5)
13.4.1 Diene Elastomers
304(1)
13.4.1.1 Polyisoprene (Natural Rubber)
304(1)
13.4.1.2 Polychloroprene (Neoprene)
305(1)
13.4.1.3 Polybutadiene
306(1)
13.4.1.4 Poly(Isobutylene-co-Isoprene) (Butyl Rubber)
306(1)
13.4.1.5 Poly(Styrene-co-Butadiene) (SBR Rubber)
307(1)
13.4.1.6 Poly(Acrylonitrile-co-Butadiene) (NBR Rubber)
307(1)
13.4.2 Ethylene-Propylene Copolymer-Based Elastomers
308(1)
13.4.2.1 Ethylene-Propylene Rubber (EPR)
308(1)
13.4.2.2 Ethylene-Propylene-Diene Monomer (EPDM) Rubber
308(1)
13.4.2.3 Silicone Elastomers
308(1)
13.5 Historical Notes
309(2)
13.6 Concluding Remarks
311(2)
14 Polymer Viscoelasticity
313(18)
14.1 Introduction
313(1)
14.2 Phenomenology of Polymer Viscoelasticity
313(6)
14.2.1 Relaxation Moduli at Constant Temperature
314(1)
14.2.2 Relaxation Moduli at Constant Time
315(1)
14.2.3 Relaxation Moduli of Several Resins
316(1)
14.2.3.1 Effect of Molecular Weight: Relaxation Moduli of Polystyrene
316(1)
14.2.3.2 Effects of Crystallinity: Relaxation Moduli of Several Resins
317(1)
14.2.3.3 Effects of Plasticizers: Relaxation Moduli of PVC
318(1)
14.3 Time-Temperature Superposition
319(4)
14.3.1 Experimental Characterization of the Master Curve
319(2)
14.3.2 Corrections to the Time-Temperature Correspondence Relations
321(1)
14.3.3 The WLF Equation
322(1)
14.3.4 Physical Interpretation for the Time-Temperature Shift
322(1)
14.3.5 Summary
322(1)
14.4 Sinusoidal Oscillatory Tests
323(5)
14.4.1 DMA Data for High-Performance Thermoplastics
324(4)
14.5 Concluding Remarks
328(3)
15 Mechanical Behavior of Plastics
331(90)
15.1 Introduction
331(1)
15.2 Deformation Phenomenology of Polycarbonate
332(28)
15.2.1 Constant-Displacement-Rate Tensile Test
333(3)
15.2.2 *Considere Treatment of Yield
336(2)
15.2.3 *Uniaxial Extension of Wide PC Specimens
338(3)
15.2.4 *Definition and Measurement of Initial Yielding
341(1)
15.2.5 *Mechanical Behavior of Necked PC
342(1)
15.2.6 *Composite Stress-Stretch Curve for PC
343(1)
15.2.7 *Creep of PC at High Loads
343(3)
15.2.8 *Deformation-Rate and Temperature Effects
346(3)
15.2.9 *Biaxial Stretching of Clamped Circular PC Sheets by Fluid Pressure
349(6)
15.2.10 Thermally Induced Recovery from a Mechanically Yielded State
355(3)
15.2.11 Large-Deformation Applications
358(2)
15.3 Tensile Characteristics of PEI
360(3)
15.3.1 Constant-Displacement-Rate Tensile Test
360(2)
15.3.2 *Deformation-Rate and Temperature Effects
362(1)
15.4 Deformation Phenomenology of PBT
363(13)
15.4.1 Constant-Displacement-Rate Tensile Test
363(1)
15.4.2 *Definition and Measurement of Initial Yielding in PBT
364(2)
15.4.3 *Mechanical Behavior of Necked PBT
366(1)
15.4.4 *Composite Stress-Stretch Curve for PBT
367(1)
15.4.5 *Deformation-Rate and Temperature Effects
368(3)
15.4.6 *Post-Yield Behavior Prior to Necking
371(1)
15.4.7 *Load History and Final Permanent Deformation
372(3)
15.4.8 Large-Deformation Applications
375(1)
15.5 Stress-Deformation Behavior of Several Plastics
376(11)
15.5.1 Thermoplastics
376(4)
15.5.2 Thermosets
380(3)
15.5.3 Thermoplastic Elastomers
383(4)
15.6 Phenomenon of Crazing
387(6)
15.7 *Multiaxial Yield
393(8)
15.7.1 Maximum Principal Stress Theory
394(1)
15.7.2 Maximum Shear Stress Theory
394(2)
15.7.3 Maximum Principle Strain Theory
396(1)
15.7.4 Strain Energy of Distortion Theory
396(3)
15.7.5 Comparison of Failure Theories
399(1)
15.7.6 Failure Theories for Plastics
400(1)
15.8 *Fracture
401(2)
15.9 Fatigue
403(9)
15.9.1 The S-N Curve
404(2)
15.9.2 *Fatigue-Crack Propagation
406(6)
15.9.3 The Role of Hysteretic Heating
412(1)
15.10 Impact Loading
412(7)
15.10.1 Instrumented Impact Test
412(2)
15.10.2 Ductile-Brittle Transition
414(5)
15.11 Creep
419(1)
15.12 Stress-Deformation Behavior of Thermoset Elastomers
419(1)
15.13 Concluding Remarks
420(1)
Further Reading
420(1)
PART IV PART PROCESSING AND ASSEMBLY: Outlines for
Chapters 16 through 21
421(356)
16 Classification of Part Shaping Methods
423(24)
16.1 Introduction
423(1)
16.2 Part Fabrication (Processing) Methods for Thermoplastics
424(5)
16.2.1 Processes Using Double-Sided Molds
426(1)
16.2.2 Processes Using Single-Sided Molds
426(3)
16.3 Evolution of Part Shaping Methods
429(2)
16.4 Effects of Processing on Part Performance
431(8)
16.5 Bulk Processing Methods for Thermoplastics
439(1)
16.5.1 Fiber Spinning
439(1)
16.5.2 Film Blowing
439(1)
16.5.3 Sheet Extrusion
439(1)
16.5.4 Profile Extrusion
439(1)
16.6 Part Processing Methods for Thermosets
440(2)
16.6.1 Processes Using Double-Sided Molds
440(1)
16.6.1.1 Processes Using Powder Resin
441(1)
16.6.1.2 Processes Using Sheet and Bulk Molding Compounds
442(1)
16.6.1.3 Processes Using Liquid Resin
442(1)
16.6.2 Processes Using Single-Sided Molds
442(1)
16.7 Part Processing Methods Advanced Composites
442(1)
16.7.1 Pultrusion
442(1)
16.7.2 Filament Winding
442(1)
16.7.3 Laminated Composites
443(1)
16.7.3.1 Prepregs
443(1)
16.7.3.2 Vacuum Bag Consolidation
443(1)
16.7.3.3 Compression Molding
443(1)
16.8 Processing Methods for Rubber Parts
443(2)
16.8.1 Rubber Compounding
443(1)
16.8.2 Dry Rubber Compounding
444(1)
16.8.2.1 Molding Processes
444(1)
16.8.2.2 Extrusion
444(1)
16.8.2.3 Calendering
444(1)
16.8.2.4 Reinforced and Coated Rubber Sheet
444(1)
16.8.3 Wet Rubber Part Fabrication
444(1)
16.8.3.1 Dip Molding
444(1)
16.8.3.2 Dip Coating
444(1)
16.9 Concluding Remarks
445(2)
17 Injection Molding and Its Variants
447(108)
17.1 Introduction
447(1)
17.2 Process Elements
447(15)
17.2.1 Mold Filling
453(1)
17.2.1.1 Filling of an Off-Center Gated Mold Cavity
453(1)
17.2.1.2 Filling of a Double-Gated Cavity
453(1)
17.2.1.3 Effects of Material Differences on Flow in a Double-Gated Cavity
454(1)
17.2.1.4 Effects of Slits in a Mold Cavity
455(2)
17.2.1.5 Flow in a Double-Gated Cavity with Inserts
457(1)
17.2.2 Part Thickness
458(2)
17.2.3 Mold Clamp Forces
460(1)
17.2.4 Mold Cooling
460(2)
17.3 Fountain Flow
462(11)
17.3.1 Meld Surfaces and Knit Lines
465(1)
17.3.1.1 Head-on Welding of Two Flow Fronts
465(2)
17.3.1.2 Melding of Flow Fronts Around a Pin
467(2)
17.3.1.3 Effects of Gates, Part Geometries, and Materials on Knit Lines
469(3)
17.3.2 The Role of Numerical Simulation
472(1)
17.4 Part Morphology
473(2)
17.5 Part Design
475(18)
17.5.1 Part Stiffening Mechanisms
475(1)
17.5.2 Molding-Driven Features
476(1)
17.5.2.1 Part Thickness Distribution
476(2)
17.5.2.2 Part Shrinkage
478(2)
17.5.2.3 Part Warpage
480(2)
17.5.2.4 Draft Angles
482(1)
17.5.2.5 Boss Geometries
482(2)
17.5.2.6 Molded-In Inserts
484(1)
17.5.3 Plastic Hinges
485(8)
17.6 Large-Versus Small-Part Molding
493(11)
17.6.1 Thin-Wall Molding
493(3)
17.6.2 Micromolding
496(8)
17.7 Molding Practice
504(4)
17.7.1 Two-Plate Cold-Runner Mold
505(3)
17.2 Three-Plate Cold-Runner Mold
508(1)
17.7.3 Molds for Parts with Undercuts
508(1)
17.7.4 Molds with Collapsible Cores
508(7)
17.7.5 Hot-Runner Molds
515(1)
17.7.6 Sprues, Runners, and Gates
515(1)
17.7.6.1 Runner Configurations
515(3)
17.7.6.2 Imbalances from Flow Asymmetry
518(2)
17.7.7 Gate Types
520(1)
17.7.7.1 Sprue Gate
521(1)
17.7.7.2 Edge Gate
521(1)
17.7.7.3 Fan Gate
521(1)
17.7.7.4 Diaphragm Gate
522(1)
17.7.8 Jetting
522(3)
17.7.9 Mold Venting
525(1)
17.7.10 Mold Cooling
525(1)
17.7.11 Summary Comments
525(1)
17.8 Variants of Injection Molding
526(29)
17.8.1 Methods for Reducing Injection Pressure
526(1)
17.8.1.1 Sequential Gating
526(1)
17.8.1.2 Injection-Compression Molding
527(2)
17.8.2 Structural Foam Molding
529(1)
17.8.2.1 Alternative Foam Molding Processes
530(4)
17.8.2.2 Advantages, Disadvantages, and Applications
534(1)
17.8.3 Microcellular Foam Molding
535(1)
17.8.4 Multimaterial Molding
538(1)
17.8.4.1 Coinjection Molding
538(1)
17.8.4.2 Overmolding
538(2)
17.8.5 Hollow Parts
540(1)
17.8.5.1 Fusible-Core Molding
540(7)
17.8.5.2 Gas-Assisted Injection Molding
547(1)
17.8.5.3 Summary Comments
548(1)
17.8.6 Knit and Meld Line Esthetics and Integrity
549(1)
17.8.6.1 Multiple-Live-Feed Injection Molding
549(1)
17.8.6.2 Push-Pull Injection Molding
550(2)
17.8.7 In-Mold Decoration and Lamination
552(3)
17.9 Concluding Remarks
555(1)
References
555(1)
18 Dimensional Stability and Residual Stresses
555(60)
18.1 Introduction
555(1)
18.2 Problem Complexity
556(1)
18.3 Shrinkage Phenomenology
556(7)
18.4 Pressure-Temperature Volumetric Data
563(4)
18.4.1 Quantification of PVT Data
564(3)
18.5 Simple Model for How Processing Affects Shrinkage
567(11)
18.5.1 Constant Packing-Pressure History
569(3)
18.5.2 Effect of Gate Freeze-Off
572(4)
18.5.3 Effect of Packing Duration
576(1)
18.5.4 Summary Comments
577(1)
18.6 *Solidification of a Molten Layer
578(7)
18.6.1 *Freezing of a Molten Layer
578(1)
18.6.2 *Fluid to Elastic-Solid Freezing Model
579(2)
18.6.3 *Numerical Example for a 3-mm-Thick Plaque
581(2)
18.6.4 *Effective Pressure as an Independent Variable
583(2)
18.6.5 *Summary Comments
585(1)
18.7 **Viscoelastic Solidification Model
585(17)
18.7.1 Viscoelastic Material Model
585(1)
18.7.2 Temperature Distribution in a Solidifying Melt
586(2)
18.7.3 Evolution of Shrinkage and Residual Stresses
588(2)
18.7.4 Effects of Packing-Pressure Level
590(3)
18.7.5 Effect of Packing-Pressure Duration
593(1)
18.7.6 Effect of Gate Freeze-Off Time
594(5)
18.7.7 Summary Comments
599(3)
18.8 **Warpage Induced by Differential Mold-Surface Temperatures
602(7)
18.8.1 Temperature Distribution in a Solidifying Melt
602(1)
18.8.2 Constant Packing-Pressure Level
602(2)
18.8.3 Effect of Packing-Pressure Level
604(1)
18.8.4 Effect of Gate Freeze-Off
605(1)
18.8.5 Summary Comments
606(3)
18.9 Concluding Remarks
609(6)
19 Alternatives to Injection Molding
615(60)
19.1 Introduction
615(1)
19.2 Extrusion
615(12)
19.2.1 Fiber Spinning
616(2)
19.2.2 Film Blowing
618(1)
19.2.3 Sheet Extrusion
618(1)
19.2.3.1 Cast Film Extrusion
619(1)
19.2.3.2 Calendered Sheet Extrusion
620(1)
19.2.4 Profile Extrusion
620(1)
19.2.4.1 Open Profiles
621(3)
19.2.4.2 Closed Profiles
624(2)
19.2.5 Coating
626(1)
19.3 Blow Molding
627(16)
19.3.1 Extrusion Blow Molding
627(2)
19.3.1.1 Parison Programming
629(2)
19.3.1.2 Deep-Draw Blow Molding
631(2)
19.3.1.3 Flashless Blow Molding of Tubular Parts
633(1)
19.3.1.4 Multilayer Extrusion Blow Molding
634(3)
19.3.1.5 Blow Molding with Encased Modules
637(3)
19.3.2 Injection Blow Molding
640(2)
19.3.3 Part Stiffening
642(1)
19.3.4 Summary Comments
642(1)
19.4 Rotational Molding
643(16)
19.4.1 Rock-and-Roll Rotational Molding
650(1)
19.4.2 Advantages and Limitations
651(3)
19.4.3 Part Morphology
654(1)
19.4.4 Part Design
655(1)
19.4.4.1 Approaches to Part Stiffening
655(4)
19.5 Thermoforming
659(10)
19.5.1 Vacuum Forming
659(3)
19.5.2 Pressure Forming
662(1)
19.5.3 Plug-Assisted Thermoforming
662(3)
19.5.4 Twin-Sheet Forming
665(2)
19.5.5 Advantages and Limitations
667(1)
19.5.6 Part Stiffening
667(1)
19.5.7 Mechanical Forming
668(1)
19.6 Expanded Bead and Extruded Foam
669(1)
19.6.1 Expanded Bead Foam Molding
669(1)
19.6.2 Extruded Foam
670(1)
19.7 3D Printing
670(2)
19.8 Concluding Remarks
672(3)
20 Fabrication Methods for Thermosets
675(36)
20.1 Introduction
675(1)
20.2 Gel Point and Curing
675(3)
20.2.1 Shelf Life of Precursors
678(1)
20.3 Compression Molding
678(3)
20.3.1 Compression Molding of Thermoplastics
680(1)
20.4 Transfer Molding
681(1)
20.5 Injection Molding
681(2)
20.5.1 Injection-Compression Molding
683(1)
20.6 Reaction Injection Molding (RIM)
683(2)
20.6.1 Reinforced Reaction Injection Molding (RRIM)
684(1)
20.6.2 Structural Reaction Injection Molding (SRIM)
685(1)
20.7 Open Mold Forming
685(1)
20.8 Fabrication of Advanced Composites
686(12)
20.8.1 Pultrusion
687(1)
20.8.2 Filament Winding
688(4)
20.8.3 Laminated Composites
692(1)
20.8.3.1 Prepregs
693(1)
20.8.3.2 Vacuum Bag Consolidation
693(1)
20.8.3.3 Compression Molding
693(1)
20.8.3.4 Pressure Bag Molding
693(1)
20.8.3.5 Liquid-Resin Transfer Molding
694(3)
20.8.3.6 Sandwich Structures with Prepreg Skins
697(1)
20.9 Fabrication of Rubber Parts
698(10)
20.9.1 Rubber Compounding
699(1)
20.9.2 Dry Rubber Part Fabrication
699(1)
20.9.2.1 Molding Processes
699(1)
20.9.2.2 Extrusion
699(1)
20.9.2.3 Calendering
700(1)
20.9.2.4 Reinforced and Coated Rubber Sheet
700(1)
20.9.3 Wet Rubber Part Fabrication
700(1)
20.9.3.1 Dip Molding
701(2)
20.9.3.2 Dip Coating
703(1)
20.9.4 Manufacture of Reinforced Rubber Parts
703(1)
20.9.4.1 Tires
703(5)
20.9.4.2 Conveyor Belts
708(1)
20.9.4.3 Pressure Hoses
708(1)
20.10 Concluding Remarks
708(3)
21 Joining of Plastics
711(66)
21.1 Introduction
711(1)
21.2 Classification of Joining Methods
712(1)
21.3 Mechanical Fastening
713(8)
21.3.1 Snap Fits
713(2)
21.3.2 Use of Screws
715(6)
21.4 Adhesive Bonding
721(1)
21.4.1 Solvent Bonding
722(1)
21.5 Welding
722(1)
21.6 Thermal Bonding
723(18)
21.6.1 Hot-Gas Welding
723(1)
21.6.2 Extrusion Welding
723(1)
21.6.3 Hot-Tool (Hot-Plate) Welding
723(6)
21.6.3.1 Weld Morphology
729(3)
21.6.3.2 Weld Strength
732(5)
21.6.4 Infrared Welding
737(1)
21.6.5 Laser Welding
738(3)
21.7 Friction Welding
741(21)
21.7.1 Spin Welding
742(1)
21.7.2 Vibration Welding
742(4)
21.7.2.1 Weld Morphology
746(3)
21.7.2.2 Weld Strength
749(4)
21.7.3 Orbital Welding
753(2)
21.7.4 Ultrasonic Welding
755(1)
21.7.4.1 Ultrasonic Staking, Spot Welding, Swaging, Insertion, and Embedding
756(6)
21.8 Electromagnetic Bonding
762(8)
21.8.1 Resistance (Implant) Welding
762(1)
21.8.2 Induction Welding
763(7)
21.8.3 Dielectric Welding
770(1)
21.9 Concluding Remarks
770(7)
PART V MATERIAL SYSTEMS: Outlines for
Chapters 22 through 25
777(234)
22 Fiber-Filled Material Materials - Materials with Microstructure
773(80)
22.1 Introduction
773(1)
22.2 Fiber Types
773(1)
22.3 Processing Issues
774(1)
22.4 Material Complexity
774(6)
22.5 Tensile and Flexural Moduli
780(3)
22.5.1 Homogeneous Bar in Tension and Bending
780(1)
22.5.2 Nonhomogeneous Bar in Tension
781(1)
22.5.3 Bending of Nonhomogeneous Bar in the Lower Stiffness Mode
781(2)
22.5 A Bending of Nonhomogeneous Bar in the Higher Stiffness Mode
783(1)
22.6 Short-Fiber-Filled Systems
784(33)
22.6.1 Tensile Modulus
785(1)
22.6.1.1 Test Procedures
785(2)
22.6.1.2 Directional and Spatial Modulus Variation
787(3)
22.6.1.3 Repeatability of Modulus Data
790(7)
22.6.1.4 Effects of Plaque Thickness on the Tensile Modulus
797(2)
22.6.1.5 Effects of Injection Speed on the Tensile Modulus
799(2)
22.6.2 Tensile and Flexural Strength
801(2)
22.6.2.1 Test Procedures
803(2)
22.6.2.2 Directional Tensile and Flexural Strengths
805(3)
22.6.2.3 Variations in Tensile and Flexural Strengths
808(4)
22.6.3 Effects of Fiber Aspect Ratio
812(1)
22.6.4 Effects of Matrix Resin
813(2)
22.6.5 Summary of Mechanical Characteristics of Short-Fiber Systems
815(2)
22.7 Long-Fiber Filled Systems
817(16)
22.7.1 Tensile Modulus
819(1)
22.7.1.1 Test Procedures
819(1)
22.7.1.2 Tensile and Flexural Tests
820(2)
22.7.1.3 Strength Variation Study
822(1)
22.7.1.4 In-Plane Tensile Modulus Variations
822(4)
22.7.2 Spatial and Directional Variations of the Tensile Modulus
826(2)
22.7.3 Flow and Cross-Flow Mechanical Properties of Injection-Molded Plaques
828(3)
22.7.4 Variations in Strength
831(1)
22.7.5 Mechanical Properties for Design
832(1)
22.8 *Fiber Orientation
833(18)
22.8.1 *Orientation of a Single Fiber
833(2)
22.8.2 *Fiber Orientation Distribution Function
835(1)
22.8.3 **Orientation Tensors
836(3)
22.8.4 *Fiber Orientation Measurement
839(1)
22.8.4.1 Direct Measurement
839(2)
22.8.4.2 Through-Thickness Variations of Orientation Tensor Components
841(3)
22.8.4.3 Indirect Measurement
844(2)
22.8.5 **Fiber Orientation Models
846(1)
22.8.5.1 Jeffery's Model
847(1)
22.8.5.2 Dinh--Armstrong Model
848(2)
22.8.5.3 Folgar--Tucker Model
850(1)
22.8.6 **Fiber Orientation Prediction
851(1)
22.9 Concluding Remarks
851(2)
23 Structural Foams -- Materials with Millistructure
853(48)
23.1 Introduction
853(2)
23.2 Material Complexity
855(1)
23.3 Foams as Nonhomogeneous Continua
856(4)
23.3.1 Nonhomogeneous Bar in Tension
856(1)
23.3.2 Bending of a Nonhomogeneous Bar in the Stiff Mode
857(1)
23.3.3 Bending of a Nonhomogeneous Bar in a Reduced Stiffness Mode
858(2)
23.4 Effective Bending Modulus for Thin-Walled Prismatic Beams
860(3)
23.4.1 I-Section Beam
862(1)
23.4.2 T-Section Beam
862(1)
23.5 Skin-Core Models for Structural Foams
863(3)
23.5.1 Four-Parameter Model
863(1)
23.5.2 Three-Parameter Model
864(2)
23.6 Stiffness and Strength of Structural Foams
866(13)
23.6.1 Test Procedure for Acquiring Stiffness and Strength Data
867(1)
23.6.2 Plaque-to-Plaque and In-Plaque Variations of Material Properties
868(5)
23.6.3 Effect of Density on Mechanical Properties
873(2)
23.6.4 Dependence of Mechanical Properties on Plaque Thickness
875(2)
23.6.5 Summary Comments
877(2)
23.7 The Average Density and the Effective Tensile and Flexural Moduli of Foams
879(5)
23.7.1 Test Procedure
879(2)
23.7.2 In-Plane Density Variations
881(3)
23.8 Density and Modulus Variation Correlations
884(3)
23.8.1 Density-Modulus Correlation for 6.35-mm Thick Foam
884(2)
23.8.2 Density-Modulus Correlation for 4-mm Thick Foam
886(1)
23.9 Flexural Modulus
887(3)
23.10 **Torsion of Nonhomogeneous Bars
890(8)
23.10.1 **Basic Equations for Modified Saint Venant's Theory
891(2)
23.10.2 **Torsion of Thin-Walled Rectangular Bars
893(2)
23.10.3 **Torsion of Thin-Walled Open Prismatic Sections
895(1)
23.10.4 **Torsion of Thin-Walled Tubes
895(3)
23.11 Implications for Mechanical Design
898(1)
23.12 Concluding Remarks
899(2)
24 Random Glass Mat Composites - Materials with Macrostructure
901(72)
24.1 Introduction
901(1)
24.2 GMT Processing
901(3)
24.3 Problem Complexity
904(2)
24.4 Effective Tensile and Flexural Moduli of Nonhomogeneous Materials
906(3)
24.4.1 Tensile Test
906(2)
24.4.2 Three-Point Flexural Test
908(1)
24.5 Insights from Model Materials
909(12)
24.5.1 Model Material with Sinusoidally Varying Modulus
909(1)
24.5.1.1 Effective Tensile Modulus
909(2)
24.5.1.2 Effective Flexural Modulus
911(2)
24.5.1.3 Effect of Gauge Length on Modulus Distribution Measurement
913(5)
24.5.2 Model Material with Rectangular Wave Modulus Variation
918(1)
24.5.3 Summary of Lessons Learned from Model Materials
919(2)
24.6 Characterization of the Tensile Modulus
921(1)
24.6.1 Cross-Machine-Direction Tensile Moduli
921(3)
24.7 Characterization of the Tensile Strength
924(1)
24.7.1 Test Procedure
924(1)
24.7.2 Machine-Direction Tensile Modulus and Strength Data
925(4)
24.7.3 Cross-Machine-Direction Tensile Modulus and Strength Data
929(3)
24.7.4 Comparison of Machine- and Cross-Machine Direction Strength Data
932(2)
24.8 Statistical Characterization of the Tensile Modulus Experimental Data
934(9)
24.8.1 Histograms for Tensile Modulus Data
935(1)
24.8.2 *Moments of the Tensile Modulus Distributions
935(5)
24.8.3 Probability Density Function for the Tensile Modulus
940(1)
24.8.4 Higher Order Moments
941(2)
24.9 Statistical Properties of Tensile Modulus Data Sets
943(3)
24.9.1 Correlation Between the Left and Right Moduli
943(1)
24.9.2 Linear Combination of Two Independent Random Variables
944(2)
24.10 Gauge-Length Effects and Large-Scale Material Stiffness
946(5)
24.10.1 Sample Size: Theoretical Considerations
947(1)
24.10.2 Sample Size: Numerical Experiments
948(3)
24.11 Methodology for Predicting the Stiffness of Parts
951(11)
24.11.1 *Effective Structural Stiffness
957(2)
24.11.2 Numerical Procedure
959(1)
24.11.3 Some Numerical Results
960(2)
24.12 *Statistical Approach to Strength
962(7)
24.12.1 *State of Material Loading
962(1)
24.12.2 Interpretation of Measured Strains: Left and Right Moduli
963(1)
24.12.3 *Correlation of Strength with Tensile Modulus
964(1)
24.12.4 *Failure of Long Dog-Bone Tensile Samples
965(2)
24.12.5 *Corrections for the Randomness of the Stress Field
967(1)
24.12.6 Summary Comments
968(1)
24.13 Implications for Mechanical Design
969(1)
24.14 Concluding Remarks
969(4)
25 Advanced Composites -- Materials with Weil-Defined Reinforcement Architectures
973(38)
25.1 Introduction
973(1)
25.2 Resins, Fibers, and Fabrics
974(3)
25.2.1 Matrix Resins
974(1)
25.2.2 Reinforcing Fibers
974(1)
25.2.2.1 Glass Fibers
974(1)
25.2.2.2 Carbon Fibers
975(1)
25.2.2.3 Aramid Fibers
976(1)
25.2.2.4 Polyethylene Fibers
976(1)
25.2.2.5 Nylon Fibers
976(1)
25.2.3 Reinforcing Tapes and Fabrics
976(1)
25.3 Advanced Composites
977(13)
25.3.1 Pultruded Composite Sections
977(1)
25.3.2 Filament-Wound Composites
977(4)
25.3.3 Laminated Composites
981(1)
25.3.3.1 Mechanical Properties of a Laminae
981(1)
25.3.3.2 Mechanical Properties of Laminae Stacks
982(1)
25.3.3.3 Analysis of Laminate Structures
983(1)
25.3.3.4 Defects and Failure Modes
984(1)
25.3.4 Resin Transfer Molded Composites
985(2)
25.3.5 Sandwich Structures
987(1)
25.3.5.1 Defects and Failure Modes
987(2)
25.3.6 Summary Comments
989(1)
25.4 Rubber-Based Composites
990(18)
25.4.1 Tires
990(1)
25.4.1.1 Automotive Tires
990(2)
25.4.1.2 Deformation of Tires
992(3)
25.4.1.3 Tread Design
995(4)
25.4.1.4 Large Heavy-Duty Tires
999(1)
25.4.2 Reinforced Rubber Conveyor Belts
1000(3)
25.4.3 Pressure Hoses
1003(5)
25.4.4 Summary Comments
1008(1)
25.5 Concluding Remarks
1008(3)
Index 1011
Vijay Kumar Stokes, PhD (Princeton), joined IIT Kanpur in 1964, where he served as the Head of the Mechanical Engineering Department (1974-1977) and as the Convener of the Nuclear Engineering and Technology Program (1977-1978). In 1978, he joined GE Corporate Research & Development, where for 15 years he worked on plastics. Professor Stokes is a Fellow of the American Society of Mechanical Engineers, the Institution of Engineers (India), and the Society of Plastics Engineers.