Series Preface |
|
xxix | |
Preface |
|
xxxi | |
|
PART I INTRODUCTION: Outlines for Chapters 1 and 2 |
|
|
1 | (94) |
|
|
3 | (32) |
|
|
3 | (1) |
|
1.2 Synergy Between Materials Science and Engineering |
|
|
4 | (3) |
|
1.3 Plastics Engineering as a Process (the Plastics Engineering Process) |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
9 | (1) |
|
1.4.2 Recycling of Plastics |
|
|
10 | (1) |
|
1.5 Material Characteristics Determine Part Shapes |
|
|
11 | (16) |
|
1.5.1 Stone as a Building Material |
|
|
11 | (1) |
|
1.5.1.1 The Early Use of Stone |
|
|
11 | (3) |
|
1.5.1.2 The Invention of the Arch |
|
|
14 | (1) |
|
|
14 | (5) |
|
|
19 | (1) |
|
1.5.2 Cast Iron as a Building Material |
|
|
19 | (1) |
|
1.5.3 Steel as a Building Material |
|
|
20 | (1) |
|
|
20 | (1) |
|
1.5.4 Shape Synthesis for Plastic Parts |
|
|
21 | (1) |
|
1.5.4.1 Part Complexity and Consolidation |
|
|
22 | (2) |
|
|
24 | (3) |
|
|
27 | (1) |
|
1.6 Part Fabrication (Part Processing) |
|
|
27 | (1) |
|
|
28 | (4) |
|
1.7.1 The Role of Numerical Methods |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (2) |
|
2 Evolving Applications of Plastics |
|
|
35 | (60) |
|
|
35 | (1) |
|
2.2 Consumer Applications |
|
|
36 | (1) |
|
|
36 | (1) |
|
2.2.1.1 Protective Clothing for Firefighters |
|
|
36 | (1) |
|
2.2 A.2 Bulletproof Clothing |
|
|
37 | (30) |
|
2.2.1.3 Hook-and-Loop Fasteners |
|
|
39 | (3) |
|
|
42 | (1) |
|
|
42 | (2) |
|
2.2.2.2 Firefighters' Boots |
|
|
44 | (2) |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (1) |
|
|
51 | (2) |
|
|
53 | (1) |
|
2.2.9 Plastic Tops for Paper Containers |
|
|
53 | (1) |
|
2.2.9.1 Plastic Tops for Cardboard Salt Containers |
|
|
54 | (1) |
|
2.2.9.2 Plastic Tops for Paper Juice Cartons |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (2) |
|
|
60 | (5) |
|
|
65 | (1) |
|
2.2.13 Small and Major Appliances |
|
|
65 | (2) |
|
|
67 | (3) |
|
2.3.1 Drip Bags and Accessories |
|
|
67 | (1) |
|
|
68 | (1) |
|
2.3.3 Medical Imaging Equipment |
|
|
69 | (1) |
|
2.3.4 Plastic Models for Body Parts |
|
|
70 | (1) |
|
2.4 Automotive Applications |
|
|
70 | (7) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
2.4.7 Boots for Constant-Velocity Joints |
|
|
76 | (1) |
|
2.5 Infrastructure Applications |
|
|
77 | (11) |
|
|
77 | (1) |
|
|
78 | (1) |
|
2.5.3 Water Management Systems |
|
|
79 | (4) |
|
2.5.4 Large-Diameter Piping |
|
|
83 | (1) |
|
|
84 | (2) |
|
|
86 | (1) |
|
2.5.7 Composite Sheet Piling |
|
|
86 | (2) |
|
|
88 | (2) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (2) |
|
PART II MECHANICS: Outlines for Chapters 3 through 8 |
|
|
95 | (120) |
|
3 Introduction to Stress and Deformation |
|
|
97 | (10) |
|
|
97 | (1) |
|
3.2 Simple Measures for Load Transfer and Deformation |
|
|
97 | (2) |
|
3.3 *Strains as Displacement Gradients |
|
|
99 | (2) |
|
3.4 *Coupling Between Normal and Shear Stresses |
|
|
101 | (1) |
|
3.5 *Coupling Between Normal and Shear Strains |
|
|
102 | (1) |
|
3.6 **Two-Dimensional Stress |
|
|
103 | (2) |
|
|
105 | (2) |
|
4 Models for Solid Materials |
|
|
107 | (12) |
|
|
107 | (1) |
|
4.2 Simple Models for the Mechanical Behavior of Solids |
|
|
107 | (1) |
|
|
108 | (1) |
|
4.4 *Anisotropic Materials |
|
|
109 | (2) |
|
4.4.1 *Orthotropic Materials |
|
|
109 | (2) |
|
4.5 Thermoelastic Effects |
|
|
111 | (2) |
|
|
113 | (3) |
|
|
116 | (3) |
|
5 Simple Structural Elements |
|
|
119 | (28) |
|
|
119 | (1) |
|
|
119 | (4) |
|
5.3 Deflection of Prismatic Beams |
|
|
123 | (1) |
|
5.3.1 Deflection of a Cantilever Due to an End Load |
|
|
123 | (1) |
|
5.3.2 Deflection of a Simply Supported Beam Due to a Central Load |
|
|
124 | (1) |
|
5.3.3 Deflection of a Simply Supported Beam Due to a Noncentral Load |
|
|
125 | (2) |
|
5.4 Torsion of Thin-Walled Circular Tubes |
|
|
127 | (2) |
|
5.5 Torsion of Thin Rectangular Bars and Open Sections |
|
|
129 | (1) |
|
5.6 Torsion of Thin-Walled Tubes |
|
|
130 | (1) |
|
5.7 Torsion of Multicellular Sections |
|
|
131 | (2) |
|
5.8 Introduction to Elastic Stability |
|
|
133 | (5) |
|
5.8.1 Concept of Stability |
|
|
133 | (1) |
|
5.8.2 Stability of a Hinged Rigid Bar |
|
|
134 | (2) |
|
5.8.3 *Spring-Supported Rigid Bar: Stability Above the Critical Load |
|
|
136 | (2) |
|
5.9 *Elastic Stability of an Axially Loaded Column |
|
|
138 | (4) |
|
5.9.1 Buckling Load for a Pin-Jointed Column |
|
|
139 | (1) |
|
5.9.2 Buckling of a Column Fixed at One End |
|
|
140 | (2) |
|
5.10 Twist-Bend Buckling of a Cantilever |
|
|
142 | (1) |
|
5.11 Stress Concentration |
|
|
142 | (3) |
|
5.12 The Role of Numerical Methods |
|
|
145 | (1) |
|
|
145 | (2) |
|
|
147 | (28) |
|
|
147 | (1) |
|
6.2 Simple Models for Heat Conduction |
|
|
147 | (2) |
|
6.2.1 Steady-State Heat Conduction |
|
|
148 | (1) |
|
6.2.2 Transient Heat Conduction |
|
|
149 | (1) |
|
6.3 Kinematics of Fluid Flow |
|
|
149 | (2) |
|
6.3.1 Measures for Deformation Rates |
|
|
150 | (1) |
|
6.4 Equations Governing One-Dimensional Fluid Flow |
|
|
151 | (6) |
|
6.4.1 One-Dimensional Continuity Equation |
|
|
152 | (1) |
|
6.4.2 Balance of Linear Momentum in One Dimension |
|
|
153 | (1) |
|
6.4.3 *Energy Balance in One Dimension |
|
|
154 | (3) |
|
6.5 Simple Models for the Mechanical Behavior of Liquids |
|
|
157 | (2) |
|
|
157 | (1) |
|
6.5.2 Non-Newtonian Liquids |
|
|
157 | (1) |
|
6.5.3 Temperature-Dependent Viscosity Models |
|
|
158 | (1) |
|
6.6 Simple One-Dimensional Flows |
|
|
159 | (12) |
|
6.6.1 Surface-Driven One-Dimensional Steady Flow |
|
|
159 | (1) |
|
6.6.2 Heat Generation in One-Dimensional Couette Flow |
|
|
160 | (1) |
|
6.6.3 *One-Dimensional Couette Flow with Temperature-Dependent Viscosity |
|
|
161 | (1) |
|
6.6.3.1 Linear Variation of Viscosity with Temperature |
|
|
161 | (1) |
|
6.6.4 *Development of Couette Flow |
|
|
162 | (1) |
|
6.6.5 Pressure-Driven One-Dimensional Steady Flow |
|
|
162 | (2) |
|
6.6.6 Pressure-Driven Radial Flow |
|
|
164 | (1) |
|
6.6.6.1 Continuity Equation for Radial Flow |
|
|
165 | (1) |
|
6.6.6.2 Balance of Linear Momentum in Radial Flow |
|
|
166 | (2) |
|
6.6.6.3 Incompressible Newtonian Radial Flow |
|
|
168 | (3) |
|
|
171 | (2) |
|
|
171 | (1) |
|
|
172 | (1) |
|
6.7.3 Vibration of a Ball Dropped in a Liquid |
|
|
172 | (3) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
7.2 Phenomenology of Viscoelasticity |
|
|
176 | (3) |
|
|
176 | (1) |
|
|
176 | (3) |
|
7.3 Linear Viscoelasticity |
|
|
179 | (3) |
|
7.3.1 Constitutive Equations |
|
|
180 | (1) |
|
7.3.2 Stress-Relaxation Integral Form |
|
|
181 | (1) |
|
7.3.3 Creep Integral Form |
|
|
181 | (1) |
|
7.3.4 *Relationship Between the Relaxation Modulus and the Creep Compliance |
|
|
181 | (1) |
|
7.4 Simple Models for Stress Relaxation and Creep |
|
|
182 | (7) |
|
7.4.1 Continuum Elastic Element (Elastic Spring) |
|
|
183 | (1) |
|
7.4.2 Continuum Viscous Element (Dashpot) |
|
|
183 | (1) |
|
|
184 | (1) |
|
7.4.3.1 Stress Relaxation |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
7.4.4.1 Stress Relaxation |
|
|
186 | (1) |
|
|
187 | (1) |
|
7.4.5 Standard Three-Parameter Model |
|
|
187 | (2) |
|
7.5 Response for Constant Strain Rates |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
7.5.3 Standard Three-Parameter Model |
|
|
190 | (1) |
|
|
190 | (3) |
|
7.6.1 Dynamic Mechanical Analysis (DMA) |
|
|
191 | (1) |
|
7.6.1.1 DMA Curves for Three-Parameter Model |
|
|
192 | (1) |
|
7.6.2 *Energy Storage and Loss |
|
|
192 | (1) |
|
7.7 Isothermal Temperature Effects |
|
|
193 | (2) |
|
7.7.1 Thermorheologically Simple Materials |
|
|
194 | (1) |
|
7.7.2 Physical Interpretation for Time-Temperature Shift |
|
|
195 | (1) |
|
7.8 *Variable Temperature Histories |
|
|
195 | (1) |
|
7.9 *Cooling of a Constrained Bar |
|
|
196 | (1) |
|
|
196 | (3) |
|
|
199 | (16) |
|
|
199 | (1) |
|
8.2 Continuous Fiber Reinforcement |
|
|
199 | (4) |
|
8.2.1 Fiber-Matrix Interphase |
|
|
202 | (1) |
|
8.3 Discontinuous Fiber Reinforcement |
|
|
203 | (8) |
|
8.3.1 Load Transfer in a Discontinuous Fiber |
|
|
203 | (5) |
|
8.3.2 Discontinuous Fiber Composite |
|
|
208 | (1) |
|
8.3.3 Reinforcing Fillers |
|
|
209 | (1) |
|
8.3.3.1 Spherical Fillers |
|
|
209 | (1) |
|
8.3.3.2 Cylindrical Fillers |
|
|
210 | (1) |
|
8.4 The Halpin-Tsai Equations |
|
|
211 | (1) |
|
8.5 Reinforcing Materials |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
212 | (1) |
|
|
212 | (1) |
|
|
212 | (3) |
|
|
215 | (1) |
|
|
215 | (1) |
|
PART III MATERIALS: Outlines for Chapters 9 through 15 |
|
|
215 | (206) |
|
9 Introduction to Polymers |
|
|
217 | (12) |
|
|
217 | (1) |
|
|
217 | (9) |
|
|
217 | (1) |
|
9.2.1.1 Linear Polyethylene |
|
|
218 | (2) |
|
9.2.1.2 Branched Polyethylene |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (2) |
|
9.2.3 Cis and Trans Isomers |
|
|
223 | (1) |
|
|
223 | (1) |
|
9.2.5 Homopolymers and Copolymers |
|
|
224 | (2) |
|
|
226 | (1) |
|
9.3 Molecular Weight Distributions |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
227 | (2) |
|
10 Concepts from Polymer Physics |
|
|
229 | (18) |
|
|
229 | (1) |
|
|
229 | (5) |
|
10.2.1 *Freely Jointed Chain Models |
|
|
230 | (1) |
|
10.2.2 *Effect of Bond Angle Restriction |
|
|
231 | (1) |
|
10.2.3 * Effect of Steric Restrictions |
|
|
232 | (2) |
|
|
234 | (6) |
|
10.3.1 Phenomenology of the Glass Transition |
|
|
234 | (2) |
|
|
236 | (1) |
|
10.3.3 Concept of Free Volume |
|
|
236 | (2) |
|
10.3.4 Effect of Pressure on Glass Transition |
|
|
238 | (1) |
|
10.3.5 Effect of Chemical Structure on Glass Transition |
|
|
239 | (1) |
|
10.3.6 Effect of Molecular Weight on Glass Transition |
|
|
240 | (1) |
|
10.4 Semicrystalline Polymers |
|
|
240 | (3) |
|
10.4.1 Structure of Polymer Crystals |
|
|
240 | (2) |
|
10.4.2 Melting Phenomenology of Semicrystalline Polymers |
|
|
242 | (1) |
|
10.4.3 Degree of Crystallinity |
|
|
242 | (1) |
|
10.5 Liquid Crystal Polymers |
|
|
243 | (2) |
|
10.5.1 Liquid Crystal Phases and Transitions |
|
|
244 | (1) |
|
10.5.2 Polymer Liquid Crystals |
|
|
245 | (1) |
|
|
245 | (2) |
|
11 Structure, Properties, and Applications of Plastics |
|
|
247 | (30) |
|
|
247 | (1) |
|
|
248 | (1) |
|
11.3 Additives and Modifiers |
|
|
248 | (3) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
11.3.1.3 Thermal Stabilizers |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
11.3.2.3 Reinforcing Fibers |
|
|
250 | (1) |
|
11.3.2.4 Impact Modifiers |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
251 | (3) |
|
|
251 | (2) |
|
11.4.1.1 High-Strength Polyethylene Fibers |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
254 | (4) |
|
11.5.1 Polyvinyl Chloride) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
11.5.3.1 Poly(Styrene-co-Acrylonitrile) (SAN) |
|
|
256 | (1) |
|
11.5.3.2 Poly(Styrene-co-Maleic Anhydride) (SMA) |
|
|
257 | (1) |
|
11.5.4 Poly(Methyl Methacrylate) |
|
|
257 | (1) |
|
11.5.5 Poly(Ethylene-co-Vinyl Alcohol) |
|
|
257 | (1) |
|
11.6 High-Performance Polymers |
|
|
258 | (7) |
|
|
258 | (1) |
|
11.6.2 Poly(Phenylene Oxide) |
|
|
259 | (1) |
|
|
259 | (1) |
|
|
260 | (1) |
|
|
261 | (1) |
|
11.6.5.1 Semicrystalline Polyamides |
|
|
261 | (1) |
|
11.6.5.2 Amorphous Polyamides |
|
|
262 | (1) |
|
|
263 | (1) |
|
11.6.6.1 Copolymers of Fluoropolymers |
|
|
264 | (1) |
|
11.7 High-Temperature Polymers |
|
|
265 | (12) |
|
11.7.1 Poly(Phenylene Sulfide) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
267 | (1) |
|
11.7.4.2 Polyethersulfone |
|
|
268 | (1) |
|
11.7.4.3 Polyphenylsulfone (Polyarylethersulfone) |
|
|
268 | (1) |
|
|
268 | (1) |
|
11.7.6 Liquid Crystalline Polyesters |
|
|
269 | (1) |
|
11.7.7 Aromatic Polyamides (Aramids) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
271 | (1) |
|
11.9 Thermoplastic Elastomers |
|
|
272 | (1) |
|
11.9.1 Polypropylene-EPDM TPE |
|
|
272 | (1) |
|
11.9.2 Thermoplastic Copolyester TPE |
|
|
272 | (1) |
|
11.9.3 Thermoplastic Urethane (TPU) |
|
|
273 | (1) |
|
|
273 | (1) |
|
|
274 | (3) |
|
|
277 | (8) |
|
|
277 | (1) |
|
|
278 | (4) |
|
12.2.1 Acrylonitrile-Butadiene-Styrene |
|
|
278 | (1) |
|
12.2.2 Acrylonitrile-Styrene-Acrylate |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
12.2.5 Polycarbonate/ABS Blends |
|
|
279 | (1) |
|
12.2.6 Poly(Phenylene Oxide)/Polystyrene Blends |
|
|
280 | (1) |
|
12.2.7 Polycarbonate/PBT Blends |
|
|
280 | (1) |
|
|
281 | (1) |
|
12.2.9 High-Temperature Blends |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (3) |
|
|
285 | (28) |
|
|
285 | (1) |
|
13.2 Thermosetting Resins |
|
|
285 | (11) |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
287 | (1) |
|
13.2.1.3 Applications of Phenolics |
|
|
288 | (1) |
|
13.2.2 Urea-Aldehyde-Based Resins |
|
|
288 | (1) |
|
13.2.2.1 Urea-Formaldehyde-Based Resin |
|
|
288 | (1) |
|
2.2.2 Melamine-Aldehyde-Based Resins |
|
|
289 | (2) |
|
13.2.2.3 Applications of Urea-and Melamine-Aldehyde Resins |
|
|
291 | (1) |
|
13.2.3 Allyl Diglycol Carbonate (CR-39) |
|
|
291 | (1) |
|
13.2.4 Thermosetting Polyesters |
|
|
291 | (2) |
|
|
293 | (1) |
|
13.2.5.1 Applications of Polyesters and Vinyl Esters |
|
|
293 | (1) |
|
|
293 | (1) |
|
13.2.6.1 Applications of Epoxies |
|
|
294 | (1) |
|
13.2.7 Sheet and Bulk Molding Compounds |
|
|
294 | (1) |
|
|
295 | (1) |
|
13.2.8.1 Applications of Polyurethanes |
|
|
296 | (1) |
|
13.3 High-Temperature Thermosets |
|
|
296 | (8) |
|
|
296 | (4) |
|
|
300 | (2) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
13.3.4 Poly(Phenylene Benzobisoxazole) |
|
|
303 | (1) |
|
13.4 Thermoset Elastomers |
|
|
304 | (5) |
|
|
304 | (1) |
|
13.4.1.1 Polyisoprene (Natural Rubber) |
|
|
304 | (1) |
|
13.4.1.2 Polychloroprene (Neoprene) |
|
|
305 | (1) |
|
|
306 | (1) |
|
13.4.1.4 Poly(Isobutylene-co-Isoprene) (Butyl Rubber) |
|
|
306 | (1) |
|
13.4.1.5 Poly(Styrene-co-Butadiene) (SBR Rubber) |
|
|
307 | (1) |
|
13.4.1.6 Poly(Acrylonitrile-co-Butadiene) (NBR Rubber) |
|
|
307 | (1) |
|
13.4.2 Ethylene-Propylene Copolymer-Based Elastomers |
|
|
308 | (1) |
|
13.4.2.1 Ethylene-Propylene Rubber (EPR) |
|
|
308 | (1) |
|
13.4.2.2 Ethylene-Propylene-Diene Monomer (EPDM) Rubber |
|
|
308 | (1) |
|
13.4.2.3 Silicone Elastomers |
|
|
308 | (1) |
|
|
309 | (2) |
|
|
311 | (2) |
|
14 Polymer Viscoelasticity |
|
|
313 | (18) |
|
|
313 | (1) |
|
14.2 Phenomenology of Polymer Viscoelasticity |
|
|
313 | (6) |
|
14.2.1 Relaxation Moduli at Constant Temperature |
|
|
314 | (1) |
|
14.2.2 Relaxation Moduli at Constant Time |
|
|
315 | (1) |
|
14.2.3 Relaxation Moduli of Several Resins |
|
|
316 | (1) |
|
14.2.3.1 Effect of Molecular Weight: Relaxation Moduli of Polystyrene |
|
|
316 | (1) |
|
14.2.3.2 Effects of Crystallinity: Relaxation Moduli of Several Resins |
|
|
317 | (1) |
|
14.2.3.3 Effects of Plasticizers: Relaxation Moduli of PVC |
|
|
318 | (1) |
|
14.3 Time-Temperature Superposition |
|
|
319 | (4) |
|
14.3.1 Experimental Characterization of the Master Curve |
|
|
319 | (2) |
|
14.3.2 Corrections to the Time-Temperature Correspondence Relations |
|
|
321 | (1) |
|
|
322 | (1) |
|
14.3.4 Physical Interpretation for the Time-Temperature Shift |
|
|
322 | (1) |
|
|
322 | (1) |
|
14.4 Sinusoidal Oscillatory Tests |
|
|
323 | (5) |
|
14.4.1 DMA Data for High-Performance Thermoplastics |
|
|
324 | (4) |
|
|
328 | (3) |
|
15 Mechanical Behavior of Plastics |
|
|
331 | (90) |
|
|
331 | (1) |
|
15.2 Deformation Phenomenology of Polycarbonate |
|
|
332 | (28) |
|
15.2.1 Constant-Displacement-Rate Tensile Test |
|
|
333 | (3) |
|
15.2.2 *Considere Treatment of Yield |
|
|
336 | (2) |
|
15.2.3 *Uniaxial Extension of Wide PC Specimens |
|
|
338 | (3) |
|
15.2.4 *Definition and Measurement of Initial Yielding |
|
|
341 | (1) |
|
15.2.5 *Mechanical Behavior of Necked PC |
|
|
342 | (1) |
|
15.2.6 *Composite Stress-Stretch Curve for PC |
|
|
343 | (1) |
|
15.2.7 *Creep of PC at High Loads |
|
|
343 | (3) |
|
15.2.8 *Deformation-Rate and Temperature Effects |
|
|
346 | (3) |
|
15.2.9 *Biaxial Stretching of Clamped Circular PC Sheets by Fluid Pressure |
|
|
349 | (6) |
|
15.2.10 Thermally Induced Recovery from a Mechanically Yielded State |
|
|
355 | (3) |
|
15.2.11 Large-Deformation Applications |
|
|
358 | (2) |
|
15.3 Tensile Characteristics of PEI |
|
|
360 | (3) |
|
15.3.1 Constant-Displacement-Rate Tensile Test |
|
|
360 | (2) |
|
15.3.2 *Deformation-Rate and Temperature Effects |
|
|
362 | (1) |
|
15.4 Deformation Phenomenology of PBT |
|
|
363 | (13) |
|
15.4.1 Constant-Displacement-Rate Tensile Test |
|
|
363 | (1) |
|
15.4.2 *Definition and Measurement of Initial Yielding in PBT |
|
|
364 | (2) |
|
15.4.3 *Mechanical Behavior of Necked PBT |
|
|
366 | (1) |
|
15.4.4 *Composite Stress-Stretch Curve for PBT |
|
|
367 | (1) |
|
15.4.5 *Deformation-Rate and Temperature Effects |
|
|
368 | (3) |
|
15.4.6 *Post-Yield Behavior Prior to Necking |
|
|
371 | (1) |
|
15.4.7 *Load History and Final Permanent Deformation |
|
|
372 | (3) |
|
15.4.8 Large-Deformation Applications |
|
|
375 | (1) |
|
15.5 Stress-Deformation Behavior of Several Plastics |
|
|
376 | (11) |
|
|
376 | (4) |
|
|
380 | (3) |
|
15.5.3 Thermoplastic Elastomers |
|
|
383 | (4) |
|
15.6 Phenomenon of Crazing |
|
|
387 | (6) |
|
|
393 | (8) |
|
15.7.1 Maximum Principal Stress Theory |
|
|
394 | (1) |
|
15.7.2 Maximum Shear Stress Theory |
|
|
394 | (2) |
|
15.7.3 Maximum Principle Strain Theory |
|
|
396 | (1) |
|
15.7.4 Strain Energy of Distortion Theory |
|
|
396 | (3) |
|
15.7.5 Comparison of Failure Theories |
|
|
399 | (1) |
|
15.7.6 Failure Theories for Plastics |
|
|
400 | (1) |
|
|
401 | (2) |
|
|
403 | (9) |
|
|
404 | (2) |
|
15.9.2 *Fatigue-Crack Propagation |
|
|
406 | (6) |
|
15.9.3 The Role of Hysteretic Heating |
|
|
412 | (1) |
|
|
412 | (7) |
|
15.10.1 Instrumented Impact Test |
|
|
412 | (2) |
|
15.10.2 Ductile-Brittle Transition |
|
|
414 | (5) |
|
|
419 | (1) |
|
15.12 Stress-Deformation Behavior of Thermoset Elastomers |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
420 | (1) |
|
PART IV PART PROCESSING AND ASSEMBLY: Outlines for Chapters 16 through 21 |
|
|
421 | (356) |
|
16 Classification of Part Shaping Methods |
|
|
423 | (24) |
|
|
423 | (1) |
|
16.2 Part Fabrication (Processing) Methods for Thermoplastics |
|
|
424 | (5) |
|
16.2.1 Processes Using Double-Sided Molds |
|
|
426 | (1) |
|
16.2.2 Processes Using Single-Sided Molds |
|
|
426 | (3) |
|
16.3 Evolution of Part Shaping Methods |
|
|
429 | (2) |
|
16.4 Effects of Processing on Part Performance |
|
|
431 | (8) |
|
16.5 Bulk Processing Methods for Thermoplastics |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
16.6 Part Processing Methods for Thermosets |
|
|
440 | (2) |
|
16.6.1 Processes Using Double-Sided Molds |
|
|
440 | (1) |
|
16.6.1.1 Processes Using Powder Resin |
|
|
441 | (1) |
|
16.6.1.2 Processes Using Sheet and Bulk Molding Compounds |
|
|
442 | (1) |
|
16.6.1.3 Processes Using Liquid Resin |
|
|
442 | (1) |
|
16.6.2 Processes Using Single-Sided Molds |
|
|
442 | (1) |
|
16.7 Part Processing Methods Advanced Composites |
|
|
442 | (1) |
|
|
442 | (1) |
|
|
442 | (1) |
|
16.7.3 Laminated Composites |
|
|
443 | (1) |
|
|
443 | (1) |
|
16.7.3.2 Vacuum Bag Consolidation |
|
|
443 | (1) |
|
16.7.3.3 Compression Molding |
|
|
443 | (1) |
|
16.8 Processing Methods for Rubber Parts |
|
|
443 | (2) |
|
16.8.1 Rubber Compounding |
|
|
443 | (1) |
|
16.8.2 Dry Rubber Compounding |
|
|
444 | (1) |
|
16.8.2.1 Molding Processes |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
444 | (1) |
|
16.8.2.4 Reinforced and Coated Rubber Sheet |
|
|
444 | (1) |
|
16.8.3 Wet Rubber Part Fabrication |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
445 | (2) |
|
17 Injection Molding and Its Variants |
|
|
447 | (108) |
|
|
447 | (1) |
|
|
447 | (15) |
|
|
453 | (1) |
|
17.2.1.1 Filling of an Off-Center Gated Mold Cavity |
|
|
453 | (1) |
|
17.2.1.2 Filling of a Double-Gated Cavity |
|
|
453 | (1) |
|
17.2.1.3 Effects of Material Differences on Flow in a Double-Gated Cavity |
|
|
454 | (1) |
|
17.2.1.4 Effects of Slits in a Mold Cavity |
|
|
455 | (2) |
|
17.2.1.5 Flow in a Double-Gated Cavity with Inserts |
|
|
457 | (1) |
|
|
458 | (2) |
|
|
460 | (1) |
|
|
460 | (2) |
|
|
462 | (11) |
|
17.3.1 Meld Surfaces and Knit Lines |
|
|
465 | (1) |
|
17.3.1.1 Head-on Welding of Two Flow Fronts |
|
|
465 | (2) |
|
17.3.1.2 Melding of Flow Fronts Around a Pin |
|
|
467 | (2) |
|
17.3.1.3 Effects of Gates, Part Geometries, and Materials on Knit Lines |
|
|
469 | (3) |
|
17.3.2 The Role of Numerical Simulation |
|
|
472 | (1) |
|
|
473 | (2) |
|
|
475 | (18) |
|
17.5.1 Part Stiffening Mechanisms |
|
|
475 | (1) |
|
17.5.2 Molding-Driven Features |
|
|
476 | (1) |
|
17.5.2.1 Part Thickness Distribution |
|
|
476 | (2) |
|
|
478 | (2) |
|
|
480 | (2) |
|
|
482 | (1) |
|
|
482 | (2) |
|
17.5.2.6 Molded-In Inserts |
|
|
484 | (1) |
|
|
485 | (8) |
|
17.6 Large-Versus Small-Part Molding |
|
|
493 | (11) |
|
|
493 | (3) |
|
|
496 | (8) |
|
|
504 | (4) |
|
17.7.1 Two-Plate Cold-Runner Mold |
|
|
505 | (3) |
|
17.2 Three-Plate Cold-Runner Mold |
|
|
508 | (1) |
|
17.7.3 Molds for Parts with Undercuts |
|
|
508 | (1) |
|
17.7.4 Molds with Collapsible Cores |
|
|
508 | (7) |
|
|
515 | (1) |
|
17.7.6 Sprues, Runners, and Gates |
|
|
515 | (1) |
|
17.7.6.1 Runner Configurations |
|
|
515 | (3) |
|
17.7.6.2 Imbalances from Flow Asymmetry |
|
|
518 | (2) |
|
|
520 | (1) |
|
|
521 | (1) |
|
|
521 | (1) |
|
|
521 | (1) |
|
|
522 | (1) |
|
|
522 | (3) |
|
|
525 | (1) |
|
|
525 | (1) |
|
|
525 | (1) |
|
17.8 Variants of Injection Molding |
|
|
526 | (29) |
|
17.8.1 Methods for Reducing Injection Pressure |
|
|
526 | (1) |
|
17.8.1.1 Sequential Gating |
|
|
526 | (1) |
|
17.8.1.2 Injection-Compression Molding |
|
|
527 | (2) |
|
17.8.2 Structural Foam Molding |
|
|
529 | (1) |
|
17.8.2.1 Alternative Foam Molding Processes |
|
|
530 | (4) |
|
17.8.2.2 Advantages, Disadvantages, and Applications |
|
|
534 | (1) |
|
17.8.3 Microcellular Foam Molding |
|
|
535 | (1) |
|
17.8.4 Multimaterial Molding |
|
|
538 | (1) |
|
17.8.4.1 Coinjection Molding |
|
|
538 | (1) |
|
|
538 | (2) |
|
|
540 | (1) |
|
17.8.5.1 Fusible-Core Molding |
|
|
540 | (7) |
|
17.8.5.2 Gas-Assisted Injection Molding |
|
|
547 | (1) |
|
17.8.5.3 Summary Comments |
|
|
548 | (1) |
|
17.8.6 Knit and Meld Line Esthetics and Integrity |
|
|
549 | (1) |
|
17.8.6.1 Multiple-Live-Feed Injection Molding |
|
|
549 | (1) |
|
17.8.6.2 Push-Pull Injection Molding |
|
|
550 | (2) |
|
17.8.7 In-Mold Decoration and Lamination |
|
|
552 | (3) |
|
|
555 | (1) |
|
|
555 | (1) |
|
18 Dimensional Stability and Residual Stresses |
|
|
555 | (60) |
|
|
555 | (1) |
|
|
556 | (1) |
|
18.3 Shrinkage Phenomenology |
|
|
556 | (7) |
|
18.4 Pressure-Temperature Volumetric Data |
|
|
563 | (4) |
|
18.4.1 Quantification of PVT Data |
|
|
564 | (3) |
|
18.5 Simple Model for How Processing Affects Shrinkage |
|
|
567 | (11) |
|
18.5.1 Constant Packing-Pressure History |
|
|
569 | (3) |
|
18.5.2 Effect of Gate Freeze-Off |
|
|
572 | (4) |
|
18.5.3 Effect of Packing Duration |
|
|
576 | (1) |
|
|
577 | (1) |
|
18.6 *Solidification of a Molten Layer |
|
|
578 | (7) |
|
18.6.1 *Freezing of a Molten Layer |
|
|
578 | (1) |
|
18.6.2 *Fluid to Elastic-Solid Freezing Model |
|
|
579 | (2) |
|
18.6.3 *Numerical Example for a 3-mm-Thick Plaque |
|
|
581 | (2) |
|
18.6.4 *Effective Pressure as an Independent Variable |
|
|
583 | (2) |
|
|
585 | (1) |
|
18.7 **Viscoelastic Solidification Model |
|
|
585 | (17) |
|
18.7.1 Viscoelastic Material Model |
|
|
585 | (1) |
|
18.7.2 Temperature Distribution in a Solidifying Melt |
|
|
586 | (2) |
|
18.7.3 Evolution of Shrinkage and Residual Stresses |
|
|
588 | (2) |
|
18.7.4 Effects of Packing-Pressure Level |
|
|
590 | (3) |
|
18.7.5 Effect of Packing-Pressure Duration |
|
|
593 | (1) |
|
18.7.6 Effect of Gate Freeze-Off Time |
|
|
594 | (5) |
|
|
599 | (3) |
|
18.8 **Warpage Induced by Differential Mold-Surface Temperatures |
|
|
602 | (7) |
|
18.8.1 Temperature Distribution in a Solidifying Melt |
|
|
602 | (1) |
|
18.8.2 Constant Packing-Pressure Level |
|
|
602 | (2) |
|
18.8.3 Effect of Packing-Pressure Level |
|
|
604 | (1) |
|
18.8.4 Effect of Gate Freeze-Off |
|
|
605 | (1) |
|
|
606 | (3) |
|
|
609 | (6) |
|
19 Alternatives to Injection Molding |
|
|
615 | (60) |
|
|
615 | (1) |
|
|
615 | (12) |
|
|
616 | (2) |
|
|
618 | (1) |
|
|
618 | (1) |
|
19.2.3.1 Cast Film Extrusion |
|
|
619 | (1) |
|
19.2.3.2 Calendered Sheet Extrusion |
|
|
620 | (1) |
|
|
620 | (1) |
|
|
621 | (3) |
|
|
624 | (2) |
|
|
626 | (1) |
|
|
627 | (16) |
|
19.3.1 Extrusion Blow Molding |
|
|
627 | (2) |
|
19.3.1.1 Parison Programming |
|
|
629 | (2) |
|
19.3.1.2 Deep-Draw Blow Molding |
|
|
631 | (2) |
|
19.3.1.3 Flashless Blow Molding of Tubular Parts |
|
|
633 | (1) |
|
19.3.1.4 Multilayer Extrusion Blow Molding |
|
|
634 | (3) |
|
19.3.1.5 Blow Molding with Encased Modules |
|
|
637 | (3) |
|
19.3.2 Injection Blow Molding |
|
|
640 | (2) |
|
|
642 | (1) |
|
|
642 | (1) |
|
|
643 | (16) |
|
19.4.1 Rock-and-Roll Rotational Molding |
|
|
650 | (1) |
|
19.4.2 Advantages and Limitations |
|
|
651 | (3) |
|
|
654 | (1) |
|
|
655 | (1) |
|
19.4.4.1 Approaches to Part Stiffening |
|
|
655 | (4) |
|
|
659 | (10) |
|
|
659 | (3) |
|
|
662 | (1) |
|
19.5.3 Plug-Assisted Thermoforming |
|
|
662 | (3) |
|
19.5.4 Twin-Sheet Forming |
|
|
665 | (2) |
|
19.5.5 Advantages and Limitations |
|
|
667 | (1) |
|
|
667 | (1) |
|
19.5.7 Mechanical Forming |
|
|
668 | (1) |
|
19.6 Expanded Bead and Extruded Foam |
|
|
669 | (1) |
|
19.6.1 Expanded Bead Foam Molding |
|
|
669 | (1) |
|
|
670 | (1) |
|
|
670 | (2) |
|
|
672 | (3) |
|
20 Fabrication Methods for Thermosets |
|
|
675 | (36) |
|
|
675 | (1) |
|
20.2 Gel Point and Curing |
|
|
675 | (3) |
|
20.2.1 Shelf Life of Precursors |
|
|
678 | (1) |
|
|
678 | (3) |
|
20.3.1 Compression Molding of Thermoplastics |
|
|
680 | (1) |
|
|
681 | (1) |
|
|
681 | (2) |
|
20.5.1 Injection-Compression Molding |
|
|
683 | (1) |
|
20.6 Reaction Injection Molding (RIM) |
|
|
683 | (2) |
|
20.6.1 Reinforced Reaction Injection Molding (RRIM) |
|
|
684 | (1) |
|
20.6.2 Structural Reaction Injection Molding (SRIM) |
|
|
685 | (1) |
|
|
685 | (1) |
|
20.8 Fabrication of Advanced Composites |
|
|
686 | (12) |
|
|
687 | (1) |
|
|
688 | (4) |
|
20.8.3 Laminated Composites |
|
|
692 | (1) |
|
|
693 | (1) |
|
20.8.3.2 Vacuum Bag Consolidation |
|
|
693 | (1) |
|
20.8.3.3 Compression Molding |
|
|
693 | (1) |
|
20.8.3.4 Pressure Bag Molding |
|
|
693 | (1) |
|
20.8.3.5 Liquid-Resin Transfer Molding |
|
|
694 | (3) |
|
20.8.3.6 Sandwich Structures with Prepreg Skins |
|
|
697 | (1) |
|
20.9 Fabrication of Rubber Parts |
|
|
698 | (10) |
|
20.9.1 Rubber Compounding |
|
|
699 | (1) |
|
20.9.2 Dry Rubber Part Fabrication |
|
|
699 | (1) |
|
20.9.2.1 Molding Processes |
|
|
699 | (1) |
|
|
699 | (1) |
|
|
700 | (1) |
|
20.9.2.4 Reinforced and Coated Rubber Sheet |
|
|
700 | (1) |
|
20.9.3 Wet Rubber Part Fabrication |
|
|
700 | (1) |
|
|
701 | (2) |
|
|
703 | (1) |
|
20.9.4 Manufacture of Reinforced Rubber Parts |
|
|
703 | (1) |
|
|
703 | (5) |
|
|
708 | (1) |
|
|
708 | (1) |
|
|
708 | (3) |
|
|
711 | (66) |
|
|
711 | (1) |
|
21.2 Classification of Joining Methods |
|
|
712 | (1) |
|
21.3 Mechanical Fastening |
|
|
713 | (8) |
|
|
713 | (2) |
|
|
715 | (6) |
|
|
721 | (1) |
|
|
722 | (1) |
|
|
722 | (1) |
|
|
723 | (18) |
|
|
723 | (1) |
|
|
723 | (1) |
|
21.6.3 Hot-Tool (Hot-Plate) Welding |
|
|
723 | (6) |
|
|
729 | (3) |
|
|
732 | (5) |
|
|
737 | (1) |
|
|
738 | (3) |
|
|
741 | (21) |
|
|
742 | (1) |
|
|
742 | (4) |
|
|
746 | (3) |
|
|
749 | (4) |
|
|
753 | (2) |
|
21.7.4 Ultrasonic Welding |
|
|
755 | (1) |
|
21.7.4.1 Ultrasonic Staking, Spot Welding, Swaging, Insertion, and Embedding |
|
|
756 | (6) |
|
21.8 Electromagnetic Bonding |
|
|
762 | (8) |
|
21.8.1 Resistance (Implant) Welding |
|
|
762 | (1) |
|
|
763 | (7) |
|
21.8.3 Dielectric Welding |
|
|
770 | (1) |
|
|
770 | (7) |
|
PART V MATERIAL SYSTEMS: Outlines for Chapters 22 through 25 |
|
|
777 | (234) |
|
22 Fiber-Filled Material Materials - Materials with Microstructure |
|
|
773 | (80) |
|
|
773 | (1) |
|
|
773 | (1) |
|
|
774 | (1) |
|
|
774 | (6) |
|
22.5 Tensile and Flexural Moduli |
|
|
780 | (3) |
|
22.5.1 Homogeneous Bar in Tension and Bending |
|
|
780 | (1) |
|
22.5.2 Nonhomogeneous Bar in Tension |
|
|
781 | (1) |
|
22.5.3 Bending of Nonhomogeneous Bar in the Lower Stiffness Mode |
|
|
781 | (2) |
|
22.5 A Bending of Nonhomogeneous Bar in the Higher Stiffness Mode |
|
|
783 | (1) |
|
22.6 Short-Fiber-Filled Systems |
|
|
784 | (33) |
|
|
785 | (1) |
|
|
785 | (2) |
|
22.6.1.2 Directional and Spatial Modulus Variation |
|
|
787 | (3) |
|
22.6.1.3 Repeatability of Modulus Data |
|
|
790 | (7) |
|
22.6.1.4 Effects of Plaque Thickness on the Tensile Modulus |
|
|
797 | (2) |
|
22.6.1.5 Effects of Injection Speed on the Tensile Modulus |
|
|
799 | (2) |
|
22.6.2 Tensile and Flexural Strength |
|
|
801 | (2) |
|
|
803 | (2) |
|
22.6.2.2 Directional Tensile and Flexural Strengths |
|
|
805 | (3) |
|
22.6.2.3 Variations in Tensile and Flexural Strengths |
|
|
808 | (4) |
|
22.6.3 Effects of Fiber Aspect Ratio |
|
|
812 | (1) |
|
22.6.4 Effects of Matrix Resin |
|
|
813 | (2) |
|
22.6.5 Summary of Mechanical Characteristics of Short-Fiber Systems |
|
|
815 | (2) |
|
22.7 Long-Fiber Filled Systems |
|
|
817 | (16) |
|
|
819 | (1) |
|
|
819 | (1) |
|
22.7.1.2 Tensile and Flexural Tests |
|
|
820 | (2) |
|
22.7.1.3 Strength Variation Study |
|
|
822 | (1) |
|
22.7.1.4 In-Plane Tensile Modulus Variations |
|
|
822 | (4) |
|
22.7.2 Spatial and Directional Variations of the Tensile Modulus |
|
|
826 | (2) |
|
22.7.3 Flow and Cross-Flow Mechanical Properties of Injection-Molded Plaques |
|
|
828 | (3) |
|
22.7.4 Variations in Strength |
|
|
831 | (1) |
|
22.7.5 Mechanical Properties for Design |
|
|
832 | (1) |
|
|
833 | (18) |
|
22.8.1 *Orientation of a Single Fiber |
|
|
833 | (2) |
|
22.8.2 *Fiber Orientation Distribution Function |
|
|
835 | (1) |
|
22.8.3 **Orientation Tensors |
|
|
836 | (3) |
|
22.8.4 *Fiber Orientation Measurement |
|
|
839 | (1) |
|
22.8.4.1 Direct Measurement |
|
|
839 | (2) |
|
22.8.4.2 Through-Thickness Variations of Orientation Tensor Components |
|
|
841 | (3) |
|
22.8.4.3 Indirect Measurement |
|
|
844 | (2) |
|
22.8.5 **Fiber Orientation Models |
|
|
846 | (1) |
|
|
847 | (1) |
|
22.8.5.2 Dinh--Armstrong Model |
|
|
848 | (2) |
|
22.8.5.3 Folgar--Tucker Model |
|
|
850 | (1) |
|
22.8.6 **Fiber Orientation Prediction |
|
|
851 | (1) |
|
|
851 | (2) |
|
23 Structural Foams -- Materials with Millistructure |
|
|
853 | (48) |
|
|
853 | (2) |
|
|
855 | (1) |
|
23.3 Foams as Nonhomogeneous Continua |
|
|
856 | (4) |
|
23.3.1 Nonhomogeneous Bar in Tension |
|
|
856 | (1) |
|
23.3.2 Bending of a Nonhomogeneous Bar in the Stiff Mode |
|
|
857 | (1) |
|
23.3.3 Bending of a Nonhomogeneous Bar in a Reduced Stiffness Mode |
|
|
858 | (2) |
|
23.4 Effective Bending Modulus for Thin-Walled Prismatic Beams |
|
|
860 | (3) |
|
|
862 | (1) |
|
|
862 | (1) |
|
23.5 Skin-Core Models for Structural Foams |
|
|
863 | (3) |
|
23.5.1 Four-Parameter Model |
|
|
863 | (1) |
|
23.5.2 Three-Parameter Model |
|
|
864 | (2) |
|
23.6 Stiffness and Strength of Structural Foams |
|
|
866 | (13) |
|
23.6.1 Test Procedure for Acquiring Stiffness and Strength Data |
|
|
867 | (1) |
|
23.6.2 Plaque-to-Plaque and In-Plaque Variations of Material Properties |
|
|
868 | (5) |
|
23.6.3 Effect of Density on Mechanical Properties |
|
|
873 | (2) |
|
23.6.4 Dependence of Mechanical Properties on Plaque Thickness |
|
|
875 | (2) |
|
|
877 | (2) |
|
23.7 The Average Density and the Effective Tensile and Flexural Moduli of Foams |
|
|
879 | (5) |
|
|
879 | (2) |
|
23.7.2 In-Plane Density Variations |
|
|
881 | (3) |
|
23.8 Density and Modulus Variation Correlations |
|
|
884 | (3) |
|
23.8.1 Density-Modulus Correlation for 6.35-mm Thick Foam |
|
|
884 | (2) |
|
23.8.2 Density-Modulus Correlation for 4-mm Thick Foam |
|
|
886 | (1) |
|
|
887 | (3) |
|
23.10 **Torsion of Nonhomogeneous Bars |
|
|
890 | (8) |
|
23.10.1 **Basic Equations for Modified Saint Venant's Theory |
|
|
891 | (2) |
|
23.10.2 **Torsion of Thin-Walled Rectangular Bars |
|
|
893 | (2) |
|
23.10.3 **Torsion of Thin-Walled Open Prismatic Sections |
|
|
895 | (1) |
|
23.10.4 **Torsion of Thin-Walled Tubes |
|
|
895 | (3) |
|
23.11 Implications for Mechanical Design |
|
|
898 | (1) |
|
|
899 | (2) |
|
24 Random Glass Mat Composites - Materials with Macrostructure |
|
|
901 | (72) |
|
|
901 | (1) |
|
|
901 | (3) |
|
|
904 | (2) |
|
24.4 Effective Tensile and Flexural Moduli of Nonhomogeneous Materials |
|
|
906 | (3) |
|
|
906 | (2) |
|
24.4.2 Three-Point Flexural Test |
|
|
908 | (1) |
|
24.5 Insights from Model Materials |
|
|
909 | (12) |
|
24.5.1 Model Material with Sinusoidally Varying Modulus |
|
|
909 | (1) |
|
24.5.1.1 Effective Tensile Modulus |
|
|
909 | (2) |
|
24.5.1.2 Effective Flexural Modulus |
|
|
911 | (2) |
|
24.5.1.3 Effect of Gauge Length on Modulus Distribution Measurement |
|
|
913 | (5) |
|
24.5.2 Model Material with Rectangular Wave Modulus Variation |
|
|
918 | (1) |
|
24.5.3 Summary of Lessons Learned from Model Materials |
|
|
919 | (2) |
|
24.6 Characterization of the Tensile Modulus |
|
|
921 | (1) |
|
24.6.1 Cross-Machine-Direction Tensile Moduli |
|
|
921 | (3) |
|
24.7 Characterization of the Tensile Strength |
|
|
924 | (1) |
|
|
924 | (1) |
|
24.7.2 Machine-Direction Tensile Modulus and Strength Data |
|
|
925 | (4) |
|
24.7.3 Cross-Machine-Direction Tensile Modulus and Strength Data |
|
|
929 | (3) |
|
24.7.4 Comparison of Machine- and Cross-Machine Direction Strength Data |
|
|
932 | (2) |
|
24.8 Statistical Characterization of the Tensile Modulus Experimental Data |
|
|
934 | (9) |
|
24.8.1 Histograms for Tensile Modulus Data |
|
|
935 | (1) |
|
24.8.2 *Moments of the Tensile Modulus Distributions |
|
|
935 | (5) |
|
24.8.3 Probability Density Function for the Tensile Modulus |
|
|
940 | (1) |
|
24.8.4 Higher Order Moments |
|
|
941 | (2) |
|
24.9 Statistical Properties of Tensile Modulus Data Sets |
|
|
943 | (3) |
|
24.9.1 Correlation Between the Left and Right Moduli |
|
|
943 | (1) |
|
24.9.2 Linear Combination of Two Independent Random Variables |
|
|
944 | (2) |
|
24.10 Gauge-Length Effects and Large-Scale Material Stiffness |
|
|
946 | (5) |
|
24.10.1 Sample Size: Theoretical Considerations |
|
|
947 | (1) |
|
24.10.2 Sample Size: Numerical Experiments |
|
|
948 | (3) |
|
24.11 Methodology for Predicting the Stiffness of Parts |
|
|
951 | (11) |
|
24.11.1 *Effective Structural Stiffness |
|
|
957 | (2) |
|
24.11.2 Numerical Procedure |
|
|
959 | (1) |
|
24.11.3 Some Numerical Results |
|
|
960 | (2) |
|
24.12 *Statistical Approach to Strength |
|
|
962 | (7) |
|
24.12.1 *State of Material Loading |
|
|
962 | (1) |
|
24.12.2 Interpretation of Measured Strains: Left and Right Moduli |
|
|
963 | (1) |
|
24.12.3 *Correlation of Strength with Tensile Modulus |
|
|
964 | (1) |
|
24.12.4 *Failure of Long Dog-Bone Tensile Samples |
|
|
965 | (2) |
|
24.12.5 *Corrections for the Randomness of the Stress Field |
|
|
967 | (1) |
|
|
968 | (1) |
|
24.13 Implications for Mechanical Design |
|
|
969 | (1) |
|
|
969 | (4) |
|
25 Advanced Composites -- Materials with Weil-Defined Reinforcement Architectures |
|
|
973 | (38) |
|
|
973 | (1) |
|
25.2 Resins, Fibers, and Fabrics |
|
|
974 | (3) |
|
|
974 | (1) |
|
25.2.2 Reinforcing Fibers |
|
|
974 | (1) |
|
|
974 | (1) |
|
|
975 | (1) |
|
|
976 | (1) |
|
25.2.2.4 Polyethylene Fibers |
|
|
976 | (1) |
|
|
976 | (1) |
|
25.2.3 Reinforcing Tapes and Fabrics |
|
|
976 | (1) |
|
|
977 | (13) |
|
25.3.1 Pultruded Composite Sections |
|
|
977 | (1) |
|
25.3.2 Filament-Wound Composites |
|
|
977 | (4) |
|
25.3.3 Laminated Composites |
|
|
981 | (1) |
|
25.3.3.1 Mechanical Properties of a Laminae |
|
|
981 | (1) |
|
25.3.3.2 Mechanical Properties of Laminae Stacks |
|
|
982 | (1) |
|
25.3.3.3 Analysis of Laminate Structures |
|
|
983 | (1) |
|
25.3.3.4 Defects and Failure Modes |
|
|
984 | (1) |
|
25.3.4 Resin Transfer Molded Composites |
|
|
985 | (2) |
|
25.3.5 Sandwich Structures |
|
|
987 | (1) |
|
25.3.5.1 Defects and Failure Modes |
|
|
987 | (2) |
|
|
989 | (1) |
|
25.4 Rubber-Based Composites |
|
|
990 | (18) |
|
|
990 | (1) |
|
25.4.1.1 Automotive Tires |
|
|
990 | (2) |
|
25.4.1.2 Deformation of Tires |
|
|
992 | (3) |
|
|
995 | (4) |
|
25.4.1.4 Large Heavy-Duty Tires |
|
|
999 | (1) |
|
25.4.2 Reinforced Rubber Conveyor Belts |
|
|
1000 | (3) |
|
|
1003 | (5) |
|
|
1008 | (1) |
|
|
1008 | (3) |
Index |
|
1011 | |