Atnaujinkite slapukų nuostatas

Introduction To Quantum Groups [Kietas viršelis]

(Moscow State Univ & Centro, Brasileiro De Pesquisas Fisicas, Rio De Janeiro), (Univ Of Helsinki & Physics Research Inst, Helsinki)
  • Formatas: Hardback, 356 pages
  • Išleidimo metai: 22-Nov-1996
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9810226233
  • ISBN-13: 9789810226237
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 356 pages
  • Išleidimo metai: 22-Nov-1996
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9810226233
  • ISBN-13: 9789810226237
Kitos knygos pagal šią temą:
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the different examples starting from the simplest quantum mechanical system harmonic oscillator and ending with actual problems of modern field theory, such as the attempts to construct lattice-like regularization consistent with space-time Poincaré symmetry and to incorporate Higgs fields in the general geometrical frame of gauge theories. Graduate students and researchers studying the problems of quantum field theory, particle physics and mathematical aspects of quantum symmetries will find the book of interest.
Preface vii
Introduction 1(8)
Notational Conventions 5(4)
1 Mathematical Aspects of Quantum Group Theory and Non-Commutative Geometry
9(102)
1.1 Non-commutative algebras, differential calculi, transformations and all that
9(13)
1.2 Hopf algebra and Poisson structure of classical Lie groups and algebras
22(19)
1.3 Deformation of co-Poisson structures
41(11)
1.4 Quasi-triangular Hopf algebras and quantum double construction
52(8)
1.5 Quantum matrix groups
60(17)
1.5.1 Quantum groups GLq(n) and SLq(n)
62(4)
1.5.2 Quantum groups SOq(N) and Spq(n)
66(4)
1.5.3 Twists of quantum groups and multiparametric defromations
70(7)
1.6 Quantum deformation of differential and integral calculi
77(15)
1.6.1 Differential calculus on q-groups
78(3)
1.6.2 Differential calculus on quantum spaces
81(4)
1.6.3 q-Deformation of integral calculus
85(7)
1.7 Elements of quantum group representations
92(19)
1.7.1 Corepresentations of quantum groups
94(5)
1.7.2 Representations of quantum universal enveloping algebras
99(8)
1.7.3 Representations of quantized algebras of functions
107(4)
2 q-Deformation of Harmonic Oscillators, Quantum Symmetry and All That
111(98)
2.1 q-Deformation of single harmonic oscillator
112(14)
2.2 Bargmann-Fock representation for q-oscillator algebra in terms of operators on quantum planes
126(6)
2.3 Quasi-classical limit of q-oscillators and q-deformed path integrals
132(19)
2.3.1 Quasi-classical limit of q-oscillators (with real parameter of deformation)
133(10)
2.3.2 Path integral for q-oscillators (real q)
143(3)
2.3.3 Path integral for q-oscillators with root of unity value of deformation parameter
146(5)
2.4 q-Oscillators and representations of QUEA
151(15)
2.4.1 q-Deformed Jordan-Schwinger realization
151(2)
2.4.2 Quantum Clebsch-Gordan coefficients and Wigner-Eckart theorem
153(5)
2.4.3 Covariant systems of q-oscillators
158(8)
2.5 q-Deformation of supergroups and conception of braided groups
166(11)
2.5.1 q-Supergroups, q-superalgebras and q-superoscillators
166(5)
2.5.2 Braided groups and spaces
171(6)
2.6 Quantum symmetries and q-deformed algebras in physical systems
177(32)
2.6.1 Integrable one-dimensional spin-chain model
177(5)
2.6.2 A model in quantum optics
182(1)
2.6.3 Magnetic translations and the algebra slq(2)
183(2)
2.6.4 Pseudoeuclidian quantum algebra as symmetry of phonons
185(3)
2.6.5 q-Oscillators and regularization of quantum field theory
188(4)
2.6.6 q-Deformed statistics and the ideal q-gas
192(6)
2.6.7 Nonlinear Regge trajectory and quantum dual string theory
198(5)
2.6.8 q-Deformation of the Virasoro algebra
203(6)
3 q-Deformation of Space-Time Symmetries
209(72)
3.1 One-dimensional lattice and q-deformation of differential calculus
210(4)
3.2 Multidimensional Jackson calculus and particle on two-dimensional quantum space
214(10)
3.3 Projective construction of quantum inhomogeneous groups
224(5)
3.4 Twisted Poincare group and geometry of q-deformed Minkowski space
229(17)
3.4.1 Quantum deformation of the Poincare group
230(4)
3.4.2 Quantum Minkowski geometry
234(3)
3.4.3 q-tetrades and transformation to commuting coordinates
237(2)
3.4.4 Twisted Poincare algebra and induced representations of the q-group
239(5)
3.4.5 Twisted Minkowski space in the case of related q and h constants
244(2)
3.5 Jordan-Schwinger construction for q-algebras of space-time symmetries and contraction of quantum groups
246(15)
3.5.1 Fock space representation of the q-Lorentz algebra
247(2)
3.5.2 q-Deformed anti-de Sitter algebra and its contraction
249(7)
3.5.3 Quantum inhomogeneous groups form contraction of q-deformed simple groups
256(5)
3.6 Elements of general theory of q-inhomogeneous groups and classification of q-Poincare groups and q-Minkowski spaces
261(20)
3.6.1 Classification of q-Lorentz groups and q-Minkowski spaces
261(7)
3.6.2 General definition and properties of inhomogeneous quantum groups
268(3)
3.6.3 Classification of quantum Poincare groups
271(10)
4 Non-commutative Geometry and Internal Symmetries of Field Theoretical Models
281(34)
4.1 Non-commutative geometry of Yang-Mills-Higgs models
283(11)
4.2 Posets, discrete differential calculus and Connes-Lott-like models
294(13)
4.2.1 Yang-Mills-Higgs theory from dimensional reduction
294(2)
4.2.2 Finite approximation of topological spaces
296(11)
4.3 Basic elements of quantum fibre bundle theory
307(8)
Appendix: Short Glossary of Selected Notions from the Theory of Classical Groups 315(8)
Bibliography 323(16)
Index 339