Atnaujinkite slapukų nuostatas

Introduction to Quantum and Vassiliev Knot Invariants 2019 ed. [Kietas viršelis]

  • Formatas: Hardback, 422 pages, aukštis x plotis: 235x155 mm, weight: 828 g, 561 Illustrations, black and white; XX, 422 p. 561 illus., 1 Hardback
  • Serija: CMS Books in Mathematics
  • Išleidimo metai: 16-May-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030052125
  • ISBN-13: 9783030052126
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 422 pages, aukštis x plotis: 235x155 mm, weight: 828 g, 561 Illustrations, black and white; XX, 422 p. 561 illus., 1 Hardback
  • Serija: CMS Books in Mathematics
  • Išleidimo metai: 16-May-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030052125
  • ISBN-13: 9783030052126
Kitos knygos pagal šią temą:

This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.


Recenzijos

 This text is a comprehensive and well written introduction to quantum and Vassiliev invariants of knots. There is sufficient detail for students and exercises. The text is also an excellent reference for researchers interested in quantum and Vassiliev invariants. (Heather A. Dye, zbMATH 1425.57007, 2019)

Part I Basic Knot Theory.- Knots.- Knot and Link Invariants.- Framed
Links.- Braids and the Braid Group.- Part II Quantum Knot Invariants.-
R-Matrix Representations of Bn.- Knot Invariants through R-Matrix
Representations of Bn.- Operator Invariants.- Ribbon Hopf Algebras.-
Reshetikin-Turaev Invariants.- Part III Vassiliev Invarients.- The
Fundamentals of Vassiliev Invariants.- Chord Diagrams.- Vassiliev Invariants
of Framed Knots.- Jacobi Diagrams.- Lie Algebra Weight Systems.- Part IV The
Kontsevich Invariant.- q-tangles.- Jacobi Diagrams on a 1-manifold.- A
Construction of the Kontsevich Invariant.- Universality Properties of the
Kontsevich Invariant.- Appendix A Background on Modules and Linear Algebra.-
Appendix B Rewriting the Definition of Operator Invariants.- Appendix C
Computations in Quasi-triangular Hopf Algebras.- Appendix D The Ribbon Hopf
Algebra.- Appendix E A Proof of the Invariance of the Reshetikin-Turaev
Invariants.