Atnaujinkite slapukų nuostatas

Introduction to Riemann-Finsler Geometry 2000 ed. [Kietas viršelis]

  • Formatas: Hardback, 435 pages, aukštis x plotis: 235x155 mm, weight: 1810 g, XX, 435 p., 1 Hardback
  • Serija: Graduate Texts in Mathematics 200
  • Išleidimo metai: 17-Mar-2000
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 038798948X
  • ISBN-13: 9780387989488
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 435 pages, aukštis x plotis: 235x155 mm, weight: 1810 g, XX, 435 p., 1 Hardback
  • Serija: Graduate Texts in Mathematics 200
  • Išleidimo metai: 17-Mar-2000
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 038798948X
  • ISBN-13: 9780387989488
Kitos knygos pagal šią temą:
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe? It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.

Recenzijos

"This book offers the most modern treatment of the topic and will attract both graduate students and a broad community of mathematicians from various related fields." EMS Newsletter, Issue 41, September 2001

Daugiau informacijos

Springer Book Archives
One Finsler Manifolds and Their Curvature.- 1 Finsler Manifolds and the
Fundamentals of Minkowski Norms.- 2 The Chern Connection.- 3 Curvature and
Schurs Lemma.- 4 Finsler Surfaces and a Generalized GaussBonnet Theorem.-
Two Calculus of Variations and Comparison Theorems.- 5 Variations of Arc
Length, Jacobi Fields, the Effect of Curvature.- 6 The Gauss Lemma and the
Hopf-Rinow Theorem.- 7 The Index Form and the Bonnet-Myers Theorem.- 8 The
Cut and Conjugate Loci, and Synges Theorem.- 9 The Cartan-Hadamard Theorem
and Rauchs First Theorem.- Three Special Finsler Spaces over the Reals.- 10
Berwald Spaces and Szabós Theorem for Berwald Surfaces.- 11 Randers Spaces
and an Elegant Theorem.- 12 Constant Flag Curvature Spaces and Akbar-Zadehs
Theorem.- 13 Riemannian Manifolds and Two of Hopfs Theorems.- 14 Minkowski
Spaces, the Theorems of Deicke and Brickell.