Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Robust Estimation and Hypothesis Testing

4.54/5 (13 ratings by Goodreads)
(University of Southern California, USA)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 18-Sep-2021
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128200995
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 18-Sep-2021
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128200995
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Introduction to Robust Estimating and Hypothesis Testing, Fifth Edition is a useful ‘how-to’ on the application of robust methods utilizing easy-to-use software. This trusted resource provides an overview of modern robust methods, including improved techniques for dealing with outliers, skewed distribution curvature, and heteroscedasticity that can provide substantial gains in power. Coverage includes techniques for comparing groups and measuring effect size, current methods for comparing quantiles, and expanded regression methods for both parametric and nonparametric techniques. The practical importance of these varied methods is illustrated using data from real world studies. Over 1700 R functions are included to support comprehension and practice.
  • Includes the latest developments in robust regression
  • Provides many new, improved and accessible R functions
  • Offers comprehensive coverage of ANOVA and ANCOVA methods
1. Introduction
2. A Foundation for Robust Methods
3. Estimating Measures of Location and Scale
4. Confidence Intervals in the One-Sample Case
5. Comparing Two Groups
6. Some Multivariate Methods
7. One-Way and Higher Designs for Independent Groups
8. Comparing Multiple Dependent Groups
9. Correlation and Tests of Independence
10. Robust Regression
11. More Regression Methods
12. ANCOVA
Rand R. Wilcox has a Ph.D. in psychometrics, and is a professor of psychology at the University of Southern California. Wilcox's main research interests are statistical methods, particularly robust methods for comparing groups and studying associations. He also collaborates with researchers in occupational therapy, gerontology, biology, education and psychology. Wilcox is an internationally recognized expert in the field of Applied Statistics and has concentrated much of his research in the area of ANOVA and Regression. Wilcox is the author of 12 books on statistics and has published many papers on robust methods. He is currently an Associate Editor for four statistics journals and has served on many editorial boards. He has given numerous invited talks and workshops on robust methods.