Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Smooth Manifolds

  • Formatas: PDF+DRM
  • Išleidimo metai: 01-Jun-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819905652
  • Formatas: PDF+DRM
  • Išleidimo metai: 01-Jun-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819905652

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Targeted to graduate students of mathematics, this book discusses major topics like the Lie group in the study of smooth manifolds. It is said that mathematics can be learned by solving problems and not only by just reading it. To serve this purpose, this book contains a sufficient number of examples and exercises after each section in every chapter. Some of the exercises are routine ones for the general understanding of topics. The book also contains hints to difficult exercises. Answers to all exercises are given at the end of each section. It also provides proofs of all theorems in a lucid manner. The only pre-requisites are good working knowledge of point-set topology and linear algebra.

Recenzijos

The book, which ends with a bibliography of 35 items, including some classical monographs in the field, is written in a clear and precise style. All the material is carefully developed, many examples and exercises support the understanding. In the reviewers opinion, this book will be of great interest to graduate and post-graduate students. (Gabriel Eduard Vilcu, zbMATH 1542.53001, 2024)

Preface

1 Calculus on Rn ..........................5

1.1 Smooth Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Tangent Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Germ of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Manifold Theory 47

2.1 Topological Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Smooth Germs on a topological manifold . . . . . . . . . . . . . . . . . . . 55

2.3 Smooth Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Stereographic Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iii

iv CONTENTS

2.5 Orientable Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.6 Product Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.7 Smooth Function on Smooth Manifold . . . . . . . . . . . . . . . . . . . . 84

2.8 Differential Curve, Tangent Vector . . . . . . . . . . . . . . . . . . . . . . 91

2.9 Inverse Function Theorem for Smooth Manifold . . . . . . . . . . . . . . . 97

2.10 Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.11 Integral Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.12 Differential of a Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.13 Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.14 f-related vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

2.15 One Parameter Group of Transformations on a Manifold . . . . . . . . . . 149

MANJUSHA MAJUMDAR (TARAFDAR), PhD, former Professor of Pure Mathematics at the University of Calcutta, India. Her main interest lies in smooth manifolds. She has published a number of research papers in several international journals of repute. Under her supervision, 10 students have already been awarded their PhD degrees. She is member of many national and international mathematical societies and serves on the editorial board of several journals of repute. She has visited several institutions in India and abroad on invitation. She is the Principal Investigator of the prestigious e-PG Pathshala in Mathematics and MOOC in Mathematics, recommended by the Ministry of Human Resource Development, the Government of India. She co-authored a book entitled, Differential Geometry.





ARINDAM BHATTACHARYYA, PhD, is Professor, Department of Mathematics, Jadavpur University, Kolkata, India. His main interest lies in smooth manifolds, geometric flows and computational geometry. He has published a number of research papers in several international journals of repute. Under his supervision, 19 research scholars have already been awarded their PhD degrees and 8 are pursuing their research. He is member of many national and international mathematical societies and serves on the editorial board of several journals of repute. He has visited several institutions in India and abroad on invitation. He has organized several international conferences and research schools in collaboration with internationally reputed mathematical organizations. He is the Course Coordinator of Differential Geometry of the prestigious e-PG Pathshala in Mathematics and MOOC in Mathematics, recommended by the Ministry of Human Resource Development, the Government of India and of Netaji Subhas Open University, India. He co-authored a book entitled, Differential Geometry with Prof. Manjusha Majumdar.