|
|
1 | (26) |
|
1.1 Example: Perfect Covers of Chessboards |
|
|
3 | (4) |
|
1.2 Example: Magic Squares |
|
|
7 | (3) |
|
1.3 Example: The Four-Color Problem |
|
|
10 | (1) |
|
1.4 Example: The Problem of the 36 Officers |
|
|
11 | (3) |
|
1.5 Example: Shortest-Route Problem |
|
|
14 | (1) |
|
1.6 Example: Mutually Overlapping Circles |
|
|
15 | (2) |
|
1.7 Example: The Game of Nim |
|
|
17 | (3) |
|
|
20 | (7) |
|
2 Permutations and Combinations |
|
|
27 | (42) |
|
2.1 Four Basic Counting Principles |
|
|
27 | (8) |
|
|
35 | (6) |
|
2.3 Combinations (Subsets) of Sets |
|
|
41 | (5) |
|
2.4 Permutations of Multisets |
|
|
46 | (6) |
|
2.5 Combinations of Multisets |
|
|
52 | (4) |
|
|
56 | (4) |
|
|
60 | (9) |
|
3 The Pigeonhole Principle |
|
|
69 | (18) |
|
3.1 Pigeonhole Principle: Simple Form |
|
|
69 | (4) |
|
3.2 Pigeonhole Principle: Strong Form |
|
|
73 | (4) |
|
|
77 | (5) |
|
|
82 | (5) |
|
4 Generating Permutations and Combinations |
|
|
87 | (40) |
|
4.1 Generating Permutations |
|
|
87 | (6) |
|
4.2 Inversions in Permutations |
|
|
93 | (5) |
|
4.3 Generating Combinations |
|
|
98 | (11) |
|
|
109 | (4) |
|
4.5 Partial Orders and Equivalence Relations |
|
|
113 | (5) |
|
|
118 | (9) |
|
5 The Binomial Coefficients |
|
|
127 | (34) |
|
|
127 | (3) |
|
|
130 | (9) |
|
5.3 Unimodality of Binomial Coefficients |
|
|
139 | (4) |
|
5.4 The Multinomial Theorem |
|
|
143 | (3) |
|
5.5 Newton's Binomial Theorem |
|
|
146 | (3) |
|
5.6 More on Partially Ordered Sets |
|
|
149 | (5) |
|
|
154 | (7) |
|
6 The Inclusion--Exclusion Principle and Applications |
|
|
161 | (44) |
|
6.1 The Inclusion--Exclusion Principle |
|
|
161 | (7) |
|
6.2 Combinations with Repetition |
|
|
168 | (4) |
|
|
172 | (5) |
|
6.4 Permutations with Forbidden Positions |
|
|
177 | (4) |
|
6.5 Another Forbidden Position Problem |
|
|
181 | (2) |
|
|
183 | (15) |
|
|
198 | (7) |
|
7 Recurrence Relations and Generating Functions |
|
|
205 | (60) |
|
7.1 Some Number Sequences |
|
|
206 | (9) |
|
|
215 | (7) |
|
7.3 Exponential Generating Functions |
|
|
222 | (6) |
|
7.4 Solving Linear Homogeneous Recurrence Relations |
|
|
228 | (17) |
|
7.5 Nonhomogeneous Recurrence Relations |
|
|
245 | (8) |
|
|
253 | (4) |
|
|
257 | (8) |
|
8 Special Counting Sequences |
|
|
265 | (56) |
|
|
265 | (9) |
|
8.2 Difference Sequences and Stirling Numbers |
|
|
274 | (17) |
|
|
291 | (7) |
|
|
298 | (3) |
|
8.5 Lattice Paths and Schroder Numbers |
|
|
301 | (14) |
|
|
315 | (6) |
|
9 Systems of Distinct Representatives |
|
|
321 | (20) |
|
9.1 General Problem Formulation |
|
|
322 | (4) |
|
|
326 | (4) |
|
|
330 | (7) |
|
|
337 | (4) |
|
|
341 | (54) |
|
|
341 | (12) |
|
|
353 | (9) |
|
10.3 Steiner Triple Systems |
|
|
362 | (6) |
|
|
368 | (20) |
|
|
388 | (7) |
|
11 Introduction to Graph Theory |
|
|
395 | (66) |
|
|
396 | (10) |
|
|
406 | (8) |
|
11.3 Hamilton Paths and Cycles |
|
|
414 | (5) |
|
11.4 Bipartite Multigraphs |
|
|
419 | (7) |
|
|
426 | (6) |
|
11.6 The Shannon Switching Game |
|
|
432 | (6) |
|
|
438 | (11) |
|
|
449 | (12) |
|
|
461 | (44) |
|
|
462 | (10) |
|
12.2 Plane and Planar Graphs |
|
|
472 | (4) |
|
12.3 A Five-Color Theorem |
|
|
476 | (4) |
|
12.4 Independence Number and Clique Number |
|
|
480 | (8) |
|
|
488 | (5) |
|
|
493 | (5) |
|
|
498 | (7) |
|
|
505 | (36) |
|
|
505 | (11) |
|
|
516 | (7) |
|
13.3 Matchings in Bipartite Graphs Revisited |
|
|
523 | (10) |
|
|
533 | (8) |
|
|
541 | |
|
14.1 Permutation and Symmetry Groups |
|
|
542 | (10) |
|
|
552 | (7) |
|
14.3 Polya's Counting Formula |
|
|
559 | (17) |
|
|
576 | |