Atnaujinkite slapukų nuostatas

Introductory Notes on Planetary Science: The solar system, exoplanets and planet formation [Kietas viršelis]

(Johns Hopkins University (United States)), (Vassar College, USA)
  • Formatas: Hardback, 194 pages, aukštis x plotis x storis: 254x178x13 mm, weight: 558 g, With figures in colour and black and white
  • Serija: IOP ebooks
  • Išleidimo metai: 03-Dec-2020
  • Leidėjas: Institute of Physics Publishing
  • ISBN-10: 0750322101
  • ISBN-13: 9780750322102
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 194 pages, aukštis x plotis x storis: 254x178x13 mm, weight: 558 g, With figures in colour and black and white
  • Serija: IOP ebooks
  • Išleidimo metai: 03-Dec-2020
  • Leidėjas: Institute of Physics Publishing
  • ISBN-10: 0750322101
  • ISBN-13: 9780750322102
Kitos knygos pagal šią temą:
Preface xii
Acknowledgements xiii
Author biographies xv
1 Introduction
1(1)
1.1 What is a Planet?
1(2)
1.1.1 How Many Planets Are There?
2(1)
1.1.2 The Official (IAU) definition of a Planet
3(1)
1.2 Solar System Overview
3(5)
1.3 Brief Remarks on This Text
8(1)
1.4 Important Terms
8(1)
1.5
Chapter 1 Homework Questions
9
References
10
2 Energy from the Sun
1(1)
2.1 Energy Generation in the Sun
1(1)
2.2 Blackbody Curves and Luminosity
2(3)
2.3 The Inverse Square Law
5(1)
2.4 The Equilibrium Temperature of Planets
6(2)
2.5 Important Terms
8(1)
2.6
Chapter 2 Homework Questions
8
Reference
9
3 Planetary Dynamics for Two Bodies
1(1)
3.1 Review of Newton's Laws and Vector Notation
1(2)
3.2 Two-body Interactions
3(5)
3.2.1 Motion of the Center of Mass
3(1)
3.2.2 Equation of Motion
4(2)
3.2.3 Consequences for Unequal Mass Systems
6(2)
3.3 Kepler's Laws of Planetary Motion
8(3)
3.3.1 Kepler's First Law
8(1)
3.3.2 Kepler's Second Law
8(2)
3.3.3 Kepler's Third Law
10(1)
3.4 Orbital Energy
11(2)
3.5 Important Terms
13(1)
3.6
Chapter 3 Homework Questions
14
4 More Complicated Dynamics: More Than Two Bodies, and Non-point Masses
1(1)
4.1 Lagrange Points
1(7)
4.1.1 Description of Lagrange Points
1(2)
4.1.2 Example of Finding a Lagrange Point: L1
3(3)
4.1.3 Lagrange Points and Stability
6(1)
4.1.4 Lagrange Points in the Solar System
7(1)
4.2 Mean Motion Resonance
8(1)
4.3 Tides and Tidal Synchronization
9(5)
4.3.1 Magnitude of the Tidal Force
10(2)
4.3.2 Tidal Synchronization
12(2)
4.3.3 Ocean Tides on Earth
14(1)
4.4 Important Terms
14(1)
4.5
Chapter 4 Homework Questions
15
References
17
5 Extrasolar Planets
1(1)
5.1 Why Finding Exoplanets Is Difficult
1(1)
5.2 Radial Velocity
2(5)
5.2.1 Review of Doppler Shift
2(1)
5.2.2 The Magnitude of the Doppler Shift for a Planet-hosting Star
3(2)
5.2.3 Observing the Doppler Shift
5(2)
5.3 Astrometry
7(1)
5.4 Transits
8(6)
5.4.1 Detectability of Transit Dips
9(2)
5.4.2 Transit Probability
11(2)
5.4.3 Determining Semi-major Axis from Transit Observations
13(1)
5.4.4 Space Telescopes and Transit Detections
14(1)
5.5 Gravitational Microlensing
14(2)
5.6 Direct Imaging
16(1)
5.7 Properties of Known Exoplanets
17(7)
5.7.1 Observational Biases in Exoplanet Observations
17(2)
5.7.2 Planet Masses
19(1)
5.7.3 Mass and Semimajor Axis
19(2)
5.7.4 Orbital Eccentricities
21(1)
5.7.5 Mass-Radius Relationships, or Planet Density
22(1)
5.7.6 The Habitable Zone
23(1)
5.7.7 Concluding Thoughts: How Can You Stay Up-to-date?
24(1)
5.8 Important Terms
24(1)
5.9
Chapter 5 Homework Questions
25
References
27
6 Planetary Interiors
1(1)
6.1 Bulk Density
1(3)
6.1.1 Measuring a Bulk Density
1(2)
6.1.2 Interpretation of Bulk Density
3(1)
6.2 Moment of Inertia and Interior Structure
4(4)
6.2.1 Review of Moment of Inertia and the Moment of Inertia Factor
4(1)
6.2.2 Equatorial Bulges and the Flattening Parameter
5(2)
6.2.3 Relationship Between Moment of Inertia and Flattening
7(1)
6.3 Energy in Planetary Interiors
8(7)
6.3.1 Energy of Formation
8(2)
6.3.2 Energy from Radioactive Decay
10(2)
6.3.3 Melting and the Formation of Planetary Cores
12(1)
6.3.4 Cooling Rates and Retention of Energy
13(2)
6.4 Interiors of Solar System Planets
15(2)
6.4.1 Interior Structure
15(1)
6.4.2 Differentiation and Earth's Surface Composition
16(1)
6.5 Important Terms
17(1)
6.6
Chapter 6 Homework Questions
18
References
20
7 Planetary Surfaces
1(1)
7.1 Impact Cratering
1(9)
7.1.1 Basic Physics of Cratering
1(4)
7.1.2 Cratering as a Probe of Geologic History
5(2)
7.1.3 Craters as a Probe of Solar System History
7(3)
7.2 Geologic Activity on the Terrestrial Planets
10(2)
7.3 Surface Composition
12(4)
7.3.1 Factors That Determine Surface Composition
13(1)
7.3.2 Remote Sensing of Planetary Surfaces
13(3)
7.4 Important Terms
16(1)
7.5
Chapter 7 Homework Questions
16
References
17
8 Planetary Atmospheres
1(1)
8.1 Escape Speed and Its Effect on Planetary Atmospheres
1(6)
8.1.1 Broad Properties of Solar System Atmospheres
1(1)
8.1.2 The Physics of Escape Speed
1(1)
8.1.3 Thermal Speeds, Atmospheric Escape, and Atmospheric Composition
1(6)
8.2 Atmospheric Structure
7(4)
8.2.1 The Scale Height and Atmospheric Pressure
7(2)
8.2.2 Convection and the Adiabatic Lapse Rate
9(2)
8.3 The Greenhouse Effect
11(4)
8.3.1 Greenhouse Gases and Surface Temperature
11(3)
8.3.2 CO2 Content and Surface Temperatures of the Terrestrial Planets
14(1)
8.3.3 The Greenhouse Effect on Earth: Global Warming
14(1)
8.4 Atmospheric Dynamics
15(6)
8.4.1 Hadley Circulation and Angular Momentum
16(2)
8.4.2 Geostrophic Balance
18(2)
8.4.3 Wind Patterns on Solar System Planets
20(1)
8.5 Important Terms
21(1)
8.6
Chapter 8 Homework Questions
21
References
22
9 Planet Formation
1(38)
9.1 Star and Disk Formation
1(3)
9.1.1 Gravity-Pressure Balance and the Jeans Mass
1(2)
9.1.2 Angular Momentum and Disk Formation
3(1)
9.2 Protoplanetary Disk Properties
4(6)
9.2.1 Bulk Properties: Composition and Mass
4(1)
9.2.2 The Shape of Protoplanetary Disks: Scale Height and Disk Pressure Gradients
5(3)
9.2.3 Disks Are Dusty: Optical Depth
8(2)
9.2.4 An Example Disk Image
10(1)
9.3 Solid Planet Growth
10(7)
9.3.1 Grains to Planets: An Overview
10(1)
9.3.2 Orderly Growth and the Timescale Problem
11(2)
9.3.3 Gravitational Focusing and the Safronov Parameter
13(3)
9.3.4 Stages of Solid Planet Growth
16(1)
9.4 Gas Giants
17(7)
9.4.1 Gravitational Instability and the Toomre Stability Criterion
17(5)
9.4.2 Core Accretion
22(1)
9.4.3 Planet Types and the Snow Line
23(1)
9.5 Disk Evolution and Planet Migration
24(5)
9.5.1 Viscosity and Disk Spreading
24(1)
9.5.2 Migration of Giant Planets (Type II Migration)
25(3)
9.5.3 Signatures of Early Solar System Dynamics
28(1)
9.6 Meteorites: Cosmochemical Probes and Planet Formation Clocks
29(6)
9.6.1 Types and Origins of Meteorites
29(1)
9.6.2 Chondrites and the Condensation Sequence
30(2)
9.6.3 26Al Decay and the Early Solar System Timeline
32(3)
9.7 Important Terms
35(1)
9.8
Chapter 9 Homework Question
36(3)
References 39