Preface |
|
vii | |
|
|
1 | (55) |
|
1.1 Basics of Ring Theory and Module Theory |
|
|
1 | (6) |
|
1.2 Simple and Semisimple Modules |
|
|
7 | (2) |
|
1.3 Essential and Closed Submodules |
|
|
9 | (4) |
|
1.4 Prime Rings and Semiprime Rings |
|
|
13 | (1) |
|
1.5 Classical Rings of Fractions and Semiprime Goldie Rings |
|
|
14 | (2) |
|
1.6 Local, Semilocal and Semiperfect Rings |
|
|
16 | (1) |
|
1.7 Injective and Projective Modules |
|
|
17 | (5) |
|
1.8 Injective Envelope and Quasi-Injective Modules |
|
|
22 | (6) |
|
|
28 | (9) |
|
1.10 Exchange Property of Modules |
|
|
37 | (13) |
|
1.11 PureTnjective and Cotorsion Modules |
|
|
50 | (6) |
|
2 Modules Invariant under Automorphisms of Envelopes |
|
|
56 | (14) |
|
2.1 Introduction to Envelopes |
|
|
56 | (2) |
|
2.2 Modules Invariant under Endomorphisms and Automorphisms |
|
|
58 | (2) |
|
2.3 Additive Unit Structure of von Neumann Regular Rings |
|
|
60 | (7) |
|
2.4 Applications of Additive Unit Structure of von Neumann Regular Rings |
|
|
67 | (3) |
|
3 Structure and Properties of Modules Invariant under Automorphisms |
|
|
70 | (11) |
|
3.1 Structure of Modules Invariant under Automorphisms |
|
|
71 | (3) |
|
3.2 Properties of Modules Invariant under Automorphisms |
|
|
74 | (3) |
|
|
77 | (2) |
|
3.4 Modules Invariant under Monomorphisms |
|
|
79 | (2) |
|
4 Automorphism-Invariant Modules |
|
|
81 | (37) |
|
4.1 Some Characterizations of Automorphism-Invariant Modules |
|
|
81 | (4) |
|
4.2 Nonsingular Automorphism-Invariant Rings |
|
|
85 | (2) |
|
4.3 When Is an Automorphism-Invariant Module a Quasi-Injective Module |
|
|
87 | (17) |
|
4.4 Rings Whose Cyclic Modules Are Automorphism-Invariant |
|
|
104 | (2) |
|
4.5 Rings Whose Each One-Sided Ideal Is Automorphism-Invariant |
|
|
106 | (12) |
|
5 Modules Coinvariant under Automorphisms of their Covers |
|
|
118 | (23) |
|
5.1 Structure and Properties |
|
|
119 | (4) |
|
5.2 Automorphism-Coinvariant Modules |
|
|
123 | (3) |
|
5.3 Dual Automorphism-Invariant Modules |
|
|
126 | (15) |
|
6 Schroder-Bernstein Problem |
|
|
141 | (10) |
|
6.1 Schroder-Bernstein Problem for k-Endomorphism Invariant Modules |
|
|
141 | (6) |
|
6.2 Schroder-Bernstein Problem for Automorphism-Invariant Modules |
|
|
147 | (4) |
|
7 Automorphism-Extendable Modules |
|
|
151 | (46) |
|
7.1 General Properties of Automorphism-Extendable Modules |
|
|
153 | (4) |
|
7.2 Semi-Artinian Automorphism-Extendable Modules |
|
|
157 | (4) |
|
7.3 Automorphism-Extendable Modules that Are Not Singular |
|
|
161 | (7) |
|
7.4 Modules over Strongly Prime Rings |
|
|
168 | (4) |
|
7.5 Modules over Hereditary Prime Rings |
|
|
172 | (6) |
|
7.6 General Properties of Endomorphism-Extendable Modules and Rings |
|
|
178 | (5) |
|
7.7 Annihilators that Are Ideals |
|
|
183 | (2) |
|
7.8 Completely Integrally Closed Subrings and Self-Injective Rings |
|
|
185 | (4) |
|
7.9 Endomorphism-Liftable and tt-Projective Modules |
|
|
189 | (1) |
|
7.10 Rings Whose Cyclic Modules are Endomorphism-Extendable |
|
|
190 | (7) |
|
8 Automorphism-Lit table Modules |
|
|
197 | (11) |
|
8.1 Automorphism-Liftable and Endomorphism-Liftable Modules |
|
|
197 | (1) |
|
8.2 Non-Primitive Hereditary Noetherian Prime Rings |
|
|
198 | (3) |
|
8.3 Non-Primitive Dedekind Prime Rings |
|
|
201 | (1) |
|
8.4 Idempotent-Lifted Modules and k-Projective Modules |
|
|
202 | (6) |
|
|
208 | (7) |
References |
|
215 | (7) |
Index |
|
222 | |