Atnaujinkite slapukų nuostatas

El. knyga: Invariance Principles and Extended Gravity: Theory and Probes

  • Formatas: 253 pages
  • Išleidimo metai: 01-Mar-2017
  • Leidėjas: Nova Science Publishers Inc
  • ISBN-13: 9781536112368
Kitos knygos pagal šią temą:
  • Formatas: 253 pages
  • Išleidimo metai: 01-Mar-2017
  • Leidėjas: Nova Science Publishers Inc
  • ISBN-13: 9781536112368
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This new book presents information on the study of gravitational theories which can be seen as modifications or extensions of General Relativity. The basic principles that a gravitational theory should follow, and their geometrical interpretation, are analysed in a broad perspective which highlights the basic assumptions of General Relativity and suggests possible modifications. In particular, the invariance principles that are related to the gravitational field are presented, showing how gravity can emerge as a gauge theory. Also, the boundle approach to gravity and derive geometrical quantities which intervene in the construction of gravitational field are discussed.
Foreword ix
Notation xi
Preface xv
1 Introduction
1(50)
1.1 Is General Relativity the Final Theory of Gravity?
1(2)
1.2 What a Good Theory of Gravity Has to Do
3(11)
1.2.1 The Foundation of Metric Theories: The Equivalence Principle
7(2)
1.2.2 The Parametrized Post Newtonian (PPN) Limit
9(1)
1.2.3 Mach's Principle and G Variability
10(4)
1.2.4 Gravity at High and Low Energies
14(1)
1.3 The Problem of Quantum Gravity
14(11)
1.3.1 Intrinsic Limits in General Relativity and Quantum Field Theory
14(1)
1.3.2 The Perturbative Covariant Approach and the Canonical Approach
15(4)
1.3.3 A Conceptual Clash: Disagreement between the Approaches
19(1)
1.3.4 Matching General Relativity with Quantum Fields: The Semiclassical Limit Approach
20(3)
1.3.5 Induced Gravity and Emergent Gravity
23(1)
1.3.6 Towards Quantum Gravity
24(1)
1.4 Cosmological and Astrophysical Riddles
25(23)
1.4.1 The First Need for Acceleration
28(2)
1.4.2 Observations, Precision Cosmology and Cosmological Constant
30(7)
1.4.3 Scalar Fields in Early Universe
37(2)
1.4.4 Inflationary Models
39(5)
1.4.5 The Dark Energy Problem
44(3)
1.4.6 The Dark Matter Problem
47(1)
1.5 The Status of Gravity
48(3)
2 Gravity Emerging from Poincare Gauge Invariance
51(52)
2.1 General Considerations on the Gauge Theories
51(3)
2.2 The Bundle Approach to the Gauge Theories
54(5)
2.3 The Bundle Structure
59(2)
2.4 The Conformal-Affine Lie Algebra
61(1)
2.5 Group Actions and Bundle Morphisms
62(1)
2.6 Nonlinear Realizations and Generalized Gauge Transformations
63(2)
2.7 The Covariant Coset Field Transformations
65(1)
2.8 The Decomposition of Connections in πPM: P → M
66(8)
2.8.1 Conformal-Affine Nonlinear Gauge Potential in πPM: P → M
68(1)
2.8.2 Conformal-Affine Nonlinear Gauge Potential in π P Σ: P → Σ
69(1)
2.8.3 Conformal-Affine Nonlinear Gauge Potential on ΠΣM: Σ → M
69(5)
2.9 The Induced Metric
74(1)
2.10 The Cartan Structure Equations
74(1)
2.11 The Bianchi Identities
75(2)
2.12 The Action Functional and the Gauge Field Equations
77(3)
2.13 Invariance Principles
80(3)
2.14 Global Poincare Invariance
83(1)
2.15 Local Poincare Invariance
84(3)
2.16 Spinors, Vectors and Tetrads
87(6)
2.17 Curvature, Torsion and Metric
93(3)
2.18 The Field Equations of Gravity
96(7)
3 Space-Time Deformations
103(10)
3.1 Deformations and Conformal Transformations
103(1)
3.2 Generalities in Space-Time Deformations
104(1)
3.3 Properties of Deforming Matrices
105(3)
3.4 Metric Deformations as Perturbations
108(2)
3.5 Approximate Killing Vectors
110(3)
4 Extended Theories of Gravity
113(26)
4.1 The Effective Action and the Field Equations
117(3)
4.2 Conformal Transformations
120(2)
4.3 The Intrinsic Conformal Structure
122(6)
4.4 Cosmological Solutions in the Einstein and Jordan Frames
128(9)
4.4.1 Some Relevant Examples
133(4)
4.5 Summary
137(2)
5 Probing the Post-Minkowskian Limit
139(26)
5.1 Gravitational Waves in Extended Gravity
139(1)
5.2 The Post Minkowskian Limit of Extended Gravity: The Case of f(R)-Gravity
140(3)
5.3 The General Theory: Ghost, Massless and Massive Modes
143(5)
5.4 Polarization States of Gravitational Waves
148(2)
5.5 Potential Detection by Interferometers
150(2)
5.6 The Stochastic Background of Gravitational Waves
152(6)
5.7 The Gravitational Stochastic Background "Tuned" by Extended Gravity
158(7)
6 Probing the Post Newtonian Limit
165(40)
6.1 The Problem of Newtonian Limit in Extended Gravity
165(1)
6.2 The Field Equations and the Newtonian Limit
166(3)
6.2.1 General Form of the Field Equations
166(1)
6.2.2 The Newtonian Limit
167(1)
6.2.3 The Quadratic Lagrangians and the Newtonian Limit of the Field Equations
168(1)
6.2.4 The Combined Lagrangian
169(1)
6.3 Considerations on the Field Equations in the Newtonian Limit
169(4)
6.3.1 The General Approach to Decouple the Field Equations
170(1)
6.3.2 Green Functions for Particular Values of the Coupling Constants
171(2)
6.4 Solutions by the Green Functions
173(1)
6.4.1 Field Equations for Particular Values of the Coupling Constants
173(1)
6.5 Green's Functions for Spherically Symmetric Systems
174(4)
6.5.1 A General Green Function for the Decoupled Field Equations
174(4)
6.6 Fourth Order Gravity and Experimental Constraints on Eddington Parameters
178(3)
6.7 Fourth Order Theories Compatible with Experimental Limits on γ and β
181(1)
6.8 Comparing with Experimental Measurements
182(2)
6.9 f(R) Viable Models
184(12)
6.10 Constraining f(R)-models by PPN Parameters
196(4)
6.11 Further Experimental Constrainsts
200(5)
7 Future Perspectives and Conclusions
205(6)
7.1 A Brief Summary
205(4)
7.2 Concluding Remarks
209(2)
References 211(20)
Index 231