Atnaujinkite slapukų nuostatas

El. knyga: Invariant Theory of Matrices

  • Formatas: 153 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 30-Dec-2017
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470443467
Kitos knygos pagal šią temą:
  • Formatas: 153 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 30-Dec-2017
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470443467
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation.

Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.

Recenzijos

The present book is a nice and introductory reference to graduate students or researchers who are working in the field of representation and invariant theory." Yin Chen, Zentralblatt MATH

"The choices made by the authors permit them to highlight the main results and also to keep the material within the reach of an interested reader. At the same time, the book remains open-ended with precise pointers to the literature on other approaches and the cases not treated here." Felipe Zaldivar, MAA Reviews

Introduction and preliminaries 1(1)
1 Introduction
2(6)
2 Preliminaries
8(11)
Part I The classical theory
19(20)
3 Representation theory
20(8)
4 Algebras with trace
28(11)
Part II Quasi-hereditary algebras
39(10)
5 Modules
40(3)
6 Good filtrations and quasi-hereditary algebras
43(6)
Part III The Schur algebra
49(38)
7 The Schur algebra
50(1)
8 Double tableaux
51(11)
9 Modules for the Schur algebra
62(13)
10 Rational GL(m)-modules
75(3)
11 Tensor products
78(9)
Part IV Matrix functions and invariants
87(20)
12 A reduction for invariants of several matrices
88(3)
13 Polarization and specialization
91(4)
14 Exterior products
95(4)
15 Matrix functions and invariants
99(8)
Part V Relations
107(24)
16 Relations
108(2)
17 Describing Km
110(8)
18 Km versus Km
118(13)
Part VI The Schur algebra of a free algebra
131(14)
19 Preliminary facts
132(3)
20 The Schur algebra of the free algebra
135(10)
Bibliography 145(4)
General Index 149(2)
Symbol Index 151
Corrado De Concini, Sapienza Universita di Roma, Rome, Italy.

Claudio Procesi, Sapienza Universita di Roma, Rome, Italy.