|
|
xvii | |
|
|
xxi | |
|
|
xxiii | |
|
1 Path Components and the Fundamental Group |
|
|
1 | (126) |
|
|
2 | (12) |
|
1.2 Simplicial, Cubical and Permutahedral Complexes |
|
|
14 | (17) |
|
1.3 Path Components and Persistence |
|
|
31 | (15) |
|
|
42 | (4) |
|
|
46 | (12) |
|
1.5 Non-regular CW-spaces |
|
|
58 | (7) |
|
1.6 The Fundamental Group |
|
|
65 | (25) |
|
1.6.1 Seifert--van Kampen Theorem for Groupoids |
|
|
85 | (1) |
|
1.6.2 The Wirtinger Presentation |
|
|
86 | (4) |
|
1.7 Computing with fp Groups |
|
|
90 | (12) |
|
1.8 Computing with fp Quandles |
|
|
102 | (6) |
|
|
108 | (11) |
|
1.9.1 A Remark on Flat Manifolds |
|
|
118 | (1) |
|
1.10 Cayley Graphs and Presentations |
|
|
119 | (4) |
|
|
123 | (4) |
|
|
127 | (86) |
|
2.1 Chain Complexes and Euler Integrals |
|
|
128 | (9) |
|
2.2 Euler Characteristics and Group Presentations |
|
|
137 | (7) |
|
2.3 Chain Maps and Homotopies |
|
|
144 | (6) |
|
|
150 | (15) |
|
2.5 Homotopical Data Fitting |
|
|
165 | (7) |
|
2.6 Homology over Principal Ideal Domains |
|
|
172 | (10) |
|
|
182 | (5) |
|
|
187 | (21) |
|
2.8.1 Van Kampen Diagrams and Cup Products |
|
|
202 | (6) |
|
|
208 | (5) |
|
|
213 | (114) |
|
3.1 Basic Definitions and Examples |
|
|
215 | (9) |
|
|
224 | (7) |
|
3.3 Operations on Resolutions |
|
|
231 | (18) |
|
|
246 | (3) |
|
|
249 | (4) |
|
|
253 | (13) |
|
3.5.1 Modular Isomorphism Problem |
|
|
260 | (6) |
|
|
266 | (5) |
|
3.7 Group Cohomology Rings |
|
|
271 | (10) |
|
|
281 | (8) |
|
3.9 A Test for Cohomology Ring Completion |
|
|
289 | (7) |
|
3.9.1 Computing Kernels of Derivations |
|
|
295 | (1) |
|
3.10 Cohomology Operations |
|
|
296 | (15) |
|
3.10.1 Stiefel--Whitney Classes |
|
|
306 | (5) |
|
|
311 | (7) |
|
|
318 | (5) |
|
|
323 | (4) |
|
4 Cohomological Group Theory |
|
|
327 | (52) |
|
|
328 | (4) |
|
4.2 Classification of Group Extensions |
|
|
332 | (5) |
|
|
337 | (2) |
|
|
339 | (6) |
|
4.5 A Five Term Exact Sequence |
|
|
345 | (12) |
|
4.6 The Nonabelian Tensor Product |
|
|
357 | (11) |
|
4.7 Crossed and Relative Group Extensions |
|
|
368 | (3) |
|
4.8 More on Relative Homology |
|
|
371 | (2) |
|
|
373 | (6) |
|
5 Cohomology of Homotopy 2-types |
|
|
379 | (44) |
|
|
379 | (3) |
|
5.2 The Fundamental Crossed Module |
|
|
382 | (9) |
|
5.2.1 Maps from a Surface to the Projective Plane |
|
|
388 | (3) |
|
5.3 Finite Crossed Modules |
|
|
391 | (11) |
|
|
402 | (11) |
|
5.5 The Homological Perturbation Lemma |
|
|
413 | (4) |
|
5.6 Homology of Simplicial Groups |
|
|
417 | (3) |
|
|
420 | (3) |
|
6 Explicit Classifying Spaces |
|
|
423 | (68) |
|
6.1 Review of Constructions |
|
|
424 | (2) |
|
|
426 | (5) |
|
|
431 | (10) |
|
|
434 | (2) |
|
6.3.2 The Group SL2(Z[ l/m]) |
|
|
436 | (5) |
|
|
441 | (12) |
|
6.4.1 Cyclic Central Extensions of Triangle Groups |
|
|
444 | (2) |
|
|
446 | (4) |
|
6.4.3 Generalized Triangle Groups |
|
|
450 | (3) |
|
6.5 Non-positive Curvature |
|
|
453 | (3) |
|
6.6 Coxeter Groups Revisited |
|
|
456 | (10) |
|
|
466 | (14) |
|
6.7.1 Some Cohomology Rings |
|
|
476 | (4) |
|
|
480 | (8) |
|
|
488 | (3) |
|
|
491 | (16) |
|
|
491 | (2) |
|
A.2 Primer on Category Theory |
|
|
493 | (1) |
|
A.3 Primer on Finitely Presented Groups and Groupoids |
|
|
494 | (2) |
|
|
496 | (1) |
|
A.5 Software for Group Cohomology |
|
|
497 | (1) |
|
|
498 | (6) |
|
A.7 Installing HAP and Related Software |
|
|
504 | (3) |
Bibliography |
|
507 | (14) |
Index |
|
521 | |