Preface |
|
xi | |
|
|
1 | (36) |
|
1.1 What is a dynamical system? |
|
|
1 | (7) |
|
|
1 | (1) |
|
1.1.2 The next instant: discrete time |
|
|
2 | (2) |
|
1.1.3 The next instant: continuous time |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
6 | (2) |
|
|
8 | (27) |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (5) |
|
|
16 | (1) |
|
|
17 | (2) |
|
1.2.6 Pushing buttons on your calculator |
|
|
19 | (3) |
|
|
22 | (2) |
|
|
24 | (2) |
|
|
26 | (2) |
|
|
28 | (3) |
|
1.2.11 "Random" number generation |
|
|
31 | (1) |
|
|
32 | (3) |
|
1.3 What we want; what we can get |
|
|
35 | (2) |
|
|
37 | (64) |
|
|
37 | (13) |
|
|
37 | (8) |
|
|
45 | (3) |
|
|
48 | (1) |
|
|
49 | (1) |
|
2.2 Two (and more) dimensions |
|
|
50 | (41) |
|
|
51 | (6) |
|
|
57 | (24) |
|
2.2.3 The nondiagonalizable case |
|
|
81 | (7) |
|
|
88 | (3) |
|
2.3 Examplification: Markov chains |
|
|
91 | (10) |
|
|
91 | (2) |
|
2.3.2 Markov chains as linear systems |
|
|
93 | (3) |
|
|
96 | (2) |
|
|
98 | (3) |
|
3 Nonlinear Systems 1: Fixed Points |
|
|
101 | (52) |
|
|
102 | (8) |
|
3.1.1 What is a fixed point? |
|
|
102 | (1) |
|
3.1.2 Finding fixed points |
|
|
103 | (1) |
|
|
104 | (4) |
|
|
108 | (2) |
|
|
110 | (18) |
|
|
110 | (7) |
|
3.2.2 Two and more dimensions |
|
|
117 | (9) |
|
|
126 | (2) |
|
|
128 | (18) |
|
3.3.1 Linearization can fail |
|
|
128 | (2) |
|
|
130 | (3) |
|
|
133 | (4) |
|
|
137 | (7) |
|
|
144 | (2) |
|
3.4 Examplification: Iterative methods for solving equations |
|
|
146 | (7) |
|
|
150 | (3) |
|
4 Nonlinear Systems 2: Periodicity and Chaos |
|
|
153 | (78) |
|
|
154 | (14) |
|
4.1.1 One dimension: no periodicity |
|
|
154 | (1) |
|
4.1.2 Two dimensions: the Poincare-Bendixson theorem |
|
|
155 | (6) |
|
4.1.3 The Hopf bifurcation |
|
|
161 | (2) |
|
4.1.4 Higher dimensions: the Lorenz system and chaos |
|
|
163 | (4) |
|
|
167 | (1) |
|
|
168 | (50) |
|
|
169 | (4) |
|
4.2.2 Stability of periodic points |
|
|
173 | (2) |
|
|
175 | (13) |
|
4.2.4 Sarkovskii's theorem |
|
|
188 | (14) |
|
4.2.5 Chaos and symbolic dynamics |
|
|
202 | (14) |
|
|
216 | (2) |
|
4.3 Examplification: Riffle shuffles and the shift map |
|
|
218 | (13) |
|
|
218 | (1) |
|
|
219 | (4) |
|
4.3.3 Shifting and shuffling |
|
|
223 | (3) |
|
4.3.4 Shuffling again and again |
|
|
226 | (3) |
|
|
229 | (2) |
|
|
231 | (86) |
|
|
231 | (11) |
|
5.1.1 Symbolic representation of Cantor's set |
|
|
232 | (1) |
|
5.1.2 Cantor's set in conventional notation |
|
|
233 | (3) |
|
5.1.3 The link between the two representations |
|
|
236 | (1) |
|
5.1.4 Topological properties of the Cantor set |
|
|
236 | (4) |
|
5.1.5 In what sense a fractal? |
|
|
240 | (1) |
|
|
241 | (1) |
|
5.2 Biting out the middle in the plane |
|
|
242 | (4) |
|
5.2.1 Sierpinski's triangle |
|
|
242 | (1) |
|
|
243 | (2) |
|
|
245 | (1) |
|
5.3 Contraction mapping theorems |
|
|
246 | (14) |
|
|
246 | (1) |
|
5.3.2 Contraction mapping theorem on the real line |
|
|
247 | (2) |
|
5.3.3 Contraction mapping in higher dimensions |
|
|
249 | (1) |
|
5.3.4 Contractive affine maps: the spectral norm |
|
|
250 | (4) |
|
5.3.5 Other metric spaces |
|
|
254 | (1) |
|
5.3.6 Compact sets and Hausdorff distance |
|
|
255 | (3) |
|
|
258 | (2) |
|
5.4 Iterated function systems |
|
|
260 | (16) |
|
5.4.1 From point maps to set maps |
|
|
260 | (2) |
|
5.4.2 The union of set maps |
|
|
262 | (3) |
|
|
265 | (5) |
|
|
270 | (1) |
|
|
271 | (5) |
|
|
276 | (1) |
|
5.5 Algorithms for drawing fractals |
|
|
276 | (11) |
|
5.5.1 A deterministic algorithm |
|
|
277 | (2) |
|
5.5.2 Dancing on fractals |
|
|
279 | (4) |
|
5.5.3 A randomized algorithm |
|
|
283 | (3) |
|
|
286 | (1) |
|
|
287 | (20) |
|
5.6.1 Covering with balls |
|
|
287 | (3) |
|
5.6.2 Definition of dimension |
|
|
290 | (2) |
|
5.6.3 Simplifying the definition |
|
|
292 | (8) |
|
5.6.4 Just-touching similitudes and dimension |
|
|
300 | (6) |
|
|
306 | (1) |
|
5.7 Examplification: Fractals in nature |
|
|
307 | (10) |
|
5.7.1 Dimension of physical fractals |
|
|
308 | (4) |
|
5.7.2 Estimating surface area |
|
|
312 | (2) |
|
|
314 | (1) |
|
|
314 | (3) |
|
6 Complex Dynamical Systems |
|
|
317 | (24) |
|
|
317 | (10) |
|
6.1.1 Definition and examples |
|
|
317 | (7) |
|
6.1.2 Escape-time algorithm |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
327 | (1) |
|
|
327 | (6) |
|
6.2.1 Definition and various views |
|
|
327 | (5) |
|
6.2.2 Escape-time algorithm |
|
|
332 | (1) |
|
|
332 | (1) |
|
6.3 Examplification: Newton's method revisited |
|
|
333 | (3) |
|
|
336 | (1) |
|
6.4 Examplification: Complex bases |
|
|
336 | (5) |
|
6.4.1 Place value revisited |
|
|
336 | (2) |
|
|
338 | (2) |
|
|
340 | (1) |
|
|
341 | (14) |
|
|
341 | (6) |
|
|
341 | (1) |
|
A.1.2 Linear independence |
|
|
342 | (1) |
|
A.1.3 Eigenvalues/vectors |
|
|
342 | (1) |
|
|
343 | (1) |
|
A.1.5 Jordan canonical form |
|
|
343 | (1) |
|
A.1.6 Basic linear transformations of the plane |
|
|
344 | (3) |
|
|
347 | (2) |
|
|
349 | (2) |
|
A.3.1 Intermediate and mean value theorems |
|
|
349 | (1) |
|
A.3.2 Partial derivatives |
|
|
350 | (1) |
|
A.4 Differential equations |
|
|
351 | (4) |
|
|
351 | (1) |
|
A.4.2 What is a differential equation? |
|
|
351 | (1) |
|
|
352 | (3) |
|
|
355 | (14) |
|
B.1 Differential equations |
|
|
355 | (10) |
|
|
356 | (1) |
|
B.1.2 Numerical solutions |
|
|
357 | (8) |
|
|
365 | (1) |
|
B.3 About the accompanying software |
|
|
366 | (3) |
Bibliography |
|
369 | (2) |
Index |
|
371 | |