Atnaujinkite slapukų nuostatas

El. knyga: Involutive Category Theory

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2279
  • Išleidimo metai: 30-Nov-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030612030
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2279
  • Išleidimo metai: 30-Nov-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030612030
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This monograph introduces involutive categories and involutive operads, featuring applications to the GNS construction and algebraic quantum field theory. The author adopts an accessible approach for readers seeking an overview of involutive category theory, from the basics to cutting-edge applications. Additionally, the authors own recent advances in the area are featured, never having appeared previously in the literature.





The opening chapters offer an introduction to basic category theory, ideal for readers new to the area. Chapters three through five feature previously unpublished results on coherence and strictification of involutive categories and involutive monoidal categories, showcasing the authors state-of-the-art research. Chapters on coherence of involutive symmetric monoidal categories, and categorical GNS construction follow. The last chapter covers involutive operads and lays important coherence foundations for applications to algebraic quantum field theory.





With detailed explanations and exercises throughout, Involutive Category Theory is suitable for graduate seminars and independent study. Mathematicians and mathematical physicists who use involutive objects will also find this a valuable reference.

Recenzijos

This is the first book whose central topic is involutive categories. It is written at the first year graduate level and is pretty much self-contained. It contains exercises and notes at the end of every chapter. It may be a useful reference for mathematicians and physicists working with involutive objects. (Bojana Femic, Mathematical Reviews, May, 2022)

1 Category Theory
1(26)
1.1 Basic Concepts of Category Theory
1(6)
1.2 Monoidal Categories
7(9)
1.3 Monads
16(3)
1.4 Colimits in Cat
19(6)
1.5 Exercises and Notes
25(2)
2 Involutive Categories
27(24)
2.1 Definition and Examples
27(4)
2.2 Involutive Functors
31(3)
2.3 Involutive Natural Transformations and Adjunctions
34(5)
2.4 Involutive Equivalences
39(1)
2.5 Involutive Objects
40(5)
2.6 Lifting Structures to Involutive Objects
45(4)
2.7 Exercises and Notes
49(2)
3 Coherence Of Involutive Categories
51(20)
3.1 Free Strict Involutive Categories
52(2)
3.2 Free Involutive Categories
54(6)
3.3 Strictification of Free Involutive Categories
60(1)
3.4 Involutive Categories as Monadic Algebras
61(3)
3.5 Presentability of Involutive Categories
64(5)
3.6 Right Adjoint of the Forgetful Functor
69(1)
3.7 Exercises
70(1)
4 Involutive Monoidal Categories
71(36)
4.1 Definitions and Examples
71(6)
4.2 Rigidity of Involutive Monoidal Categories
77(3)
4.3 Involutive Monoidal Functors
80(3)
4.4 Involutive Monoidal Category of Involutive Objects
83(3)
4.5 Involutive Monoids
86(5)
4.6 Involutive Commutative Monoids
91(2)
4.7 Reversing Involutive Monoids
93(4)
4.8 Involutive Monads
97(6)
4.9 Exercises and Notes
103(4)
5 Coherence Of Involutive Monoidal Categories
107(38)
5.1 Free Involutive Monoidal Categories
107(14)
5.2 Free Involutive Strict Monoidal Categories
121(3)
5.3 Commutativity of Formal Diagrams
124(4)
5.4 Strictification of Involutive Monoidal Categories
128(6)
5.5 Free Involutive Monoidal Categories of Involutive Categories
134(7)
5.6 Free Involutive Strict Monoidal Categories of Involutive Categories
141(2)
5.7 Exercises and Notes
143(2)
6 Coherence Of Involutive Symmetric Monoidal Categories
145(20)
6.1 Free Involutive Symmetric Monoidal Categories
146(7)
6.2 Free Involutive Strict Symmetric Monoidal Categories
153(2)
6.3 Commutativity of Formal Diagrams
155(1)
6.4 Strictification of Involutive Symmetric Monoidal Categories
156(1)
6.5 Free Involutive Symmetric Monoidal Categories of Involutive Categories
157(3)
6.6 Free Involutive Strict Symmetric Monoidal Categories of Invol uti ve Categories
160(2)
6.7 Exercises
162(3)
7 Categorical Gelfand--Naimark--Segal Construction
165(20)
7.1 Monoid Inner Product Objects
166(6)
7.2 Correspondence Between States and Inner Products
172(4)
7.3 Proofs of Technical Lemmas
176(8)
7.4 Exercises and Notes
184(1)
8 Involutive Operads
185(44)
8.1 Operads
187(8)
8.2 Algebras
195(6)
8.3 Involutive Operads as Involutive Monoids
201(6)
8.4 Involutive Monads from Involutive Operads
207(3)
8.5 Involutive Algebras of Involutive Operads
210(5)
8.6 Change of Involutive Symmetric Monoidal Categories
215(5)
8.7 AQFT Involutive Operad
220(6)
8.8 Exercises and Notes
226(3)
Symbol Definition List 229(6)
Bibliography 235(4)
Index 239
Donald Yau is Professor of Mathematics at The Ohio State University at Newark. He obtained his PhD at MIT and held a post-doctoral position at the University of Illinois at Urbana-Champaign. His research focuses on algebraic topology. He has authored over forty articles and eight books, including the Springer titles Operads of Wiring Diagrams and Infinity Properads and Infinity Wheeled Properads.