Atnaujinkite slapukų nuostatas

El. knyga: Ion Pumps, Part A

Edited by (Institute of Physiology, University of Aarhus, Aarhus, Denmark)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Both eukaryotic and prokaryotic cells depend strongly on the function of ion pumps present in their membranes. The term ion pump, synonymous with active ion-transport system, refers to a membrane-associated protein that translocates ions uphill against an electrochemical potential gradient. Primary ion pumps utilize energy derived from chemical reactions or from the absorption of light, while secondary ion pumps derive the energy for uphill movement of one ionic species from the downhill movement of another species.

In the present volume, various aspects of ion pump structure, mechanism, and regulation are treated using mostly the ion-transporting ATPases as examples. One chapter has been devoted to a secondary ion pump, the Na+-Ca2+ exchanger, not only because of the vital role played by this transport system in regulation of cardiac contractility, but also because it exemplifies the interesting mechanistic and structural similarities between primary and secondary pumps.
List of Contributors
ix
Preface xiii
Jens Peter Andersen
Reaction Mechanism of the Sarcoplasmic Recticulum Ca2+ -ATPASE
1(32)
Herman Wolosker
Simone Engelender
Leopoldo de Meis
The ATP Binding Sites of P-Type Ion Transport ATPASES: Properties, Structure, Conformations, and Mechanism of Energy Coupling
33(68)
David B. McIntosh
The Gastric H+-K+-ATPase
101(42)
Jai Moo Shin
Denis Bayle
Krister Bamberg
George Sachs
Genetic Approaches to Structure-Function Analysis in the Yeast Plasma Membrane H+-ATPASE
143(24)
David S. Perlin
James E. Haber
Copper Homeostasis by CPX-Type ATPASES: The New Subclass of Heavy Metal P-Type ATPASES
167(38)
Marc Solioz
Isosform Diversity and Regulation of Organellar-Type Ca2+-Transport ATPASES
205(44)
Frank Wuytack
Luc Raeymaekers
Jan Eggermont
Ludo Van Den Bosch
Hilde Verboomen
Luc Mertens
List of Contributors ix
Preface xiii
Jens Peter Andersen
Comparison of ATP-Powered Ca2+ Pumps
249(26)
John T. Penniston
Agnes Enyedi
Molecular Mechanisms Involved in the Regulation of Na-K-ATPASE Expression
275(36)
Kathi Geering
Structure, Mechanism, and Regulation of The Cardiac Sarcolemma Na+-Ca2+ Exchanger
311(48)
Daniel Khananshvili
Structure and Dynamics of the F1F0-Type ATPASE
359(22)
Roderick A. Capaldi
Robert Aggeler
Structure and Mechanism of F-Type ATPASES
381(22)
Ursula Gerike
Peter Dimroth
Structure, Function, and Regulation of the Vacuolar (H+)-ATPASES
403(52)
Michael Forgac
Anion Transport Systems
455(36)
Parjit Kaur
Index 491