Atnaujinkite slapukų nuostatas

El. knyga: Jacobi-Like Forms, Pseudodifferential Operators, and Quasimodular Forms

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book explores various properties of quasimodular forms, especially their connections with Jacobi-like forms and automorphic pseudodifferential operators. The material that is essential to the subject is presented in sufficient detail, including necessary background on pseudodifferential operators, Lie algebras, etc., to make it accessible also to non-specialists. The book also covers a sufficiently broad range of illustrations of how the main themes of the book have occurred in various parts of mathematics to make it attractive to a wider audience.

The book is intended for researchers and graduate students in number theory.  

Recenzijos

The book does an outstanding job of curating and detailing a list of important and interconnected mathematical concepts surrounding quasimodular forms, while also building the useful languages for Jacobi-like forms, pseudodifferential operators, and the connections among these objects. It comprehensively examines the chosen topics and detailed proofs. At the same time, the book excels at maintaining its focus on the topics at hand, and not leading the reader astray by examining too many ancillary themes. (Matthew Krauel, Mathematical Reviews, June, 2023)

Introduction.-  Formal power series and pseudodifferential operators.-
Jacobi-like forms and pseudodifferential operators.- Hecke operators.- Lie
algebras.- Heat operators.- Group cohomology.- Quasimodular forms.-
Quasimodular and modular polynomials.- Liftings of quasimodular
forms.- Quasimodular forms and vector-valued modular forms.- Differential
operators on modular forms.- Half-integral weight forms.- Projective
structures.-  Applications of quasimodular forms.
YoungJu Choie, currently Professor of Mathematics at Pohang University of Science and Technology and was an Assistant Professor at the University of Colorado at Boulder, works in the area of number theory, in particular modular forms. She has over 100 publications including a monograph in the Memoirs of American mathematical Society. She served as Editor in Chief of the Bulletin of the Korean Mathematical Society and is currently an Editor of the International Journal of Number Theory. In 2013, she became inaugural Fellow of the American Mathematical Society and In 2018 she became a member of the Korean Academy of Science and Technology. She has received several awards such as  "The best woman Scientist of the year" award (2005) from the Ministry of Science and Technology of  Korea. She has been a visiting fellow at the Max-Planck Institute for Mathematics in Bonn, Stanford University, University of Cambridge. 





MinHo Lee,  currently Professor of Mathematics at the University of Northern Iowa, works in the area of number theory and algebraic geometry. He has over 100 publications including the monograph "Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms" published by Springer-Verlag in the Lecture Notes in Mathematics series (No. 1845).