Atnaujinkite slapukų nuostatas

El. knyga: K3 Surfaces and Their Moduli

Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 315
  • Išleidimo metai: 22-Apr-2016
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319299594
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 315
  • Išleidimo metai: 22-Apr-2016
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319299594
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This bookprovides an overview of the latest developments concerning the moduli of K3surfaces. It is aimed at algebraic geometers, but is also of interest to numbertheorists and theoretical physicists, and continues the tradition of relatedvolumes like "The Moduli Space of Curves" and "Moduli of Abelian Varieties,"which originated from conferences on the islands Texel and Schiermonnikoog andwhich have become classics.K3 surfacesand their moduli form a central topic in algebraic geometry and arithmeticgeometry, and have recently attracted a lot of attention from bothmathematicians and theoretical physicists. Advances in this field often resultfrom mixing sophisticated techniques from algebraic geometry, lattice theory,number theory, and dynamical systems. The topic has received significantimpetus due to recent breakthroughs on the Tate conjecture, the study ofstability conditions and derived categories, and links with mirror symmetry andstring theory. At the same tim

e, the theory of irreducible holomorphicsymplectic varieties, the higher dimensional analogues of K3 surfaces, hasbecome a mainstream topic in algebraic geometry.Contributors:S. Boissičre, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman,K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M.Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I.Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.

Introduction.- Samuel Boissičre, Andrea Cattaneo, MarcNieper-Wisskirchen, and Alessandra Sarti : The automorphism group of theHilbert scheme of two points on a generic projective K3 surface.- Igor Dolgachev : Orbital counting ofcurves on algebraic surfaces and sphere packings.- V. Gritsenko and K. Hulek : Moduli of polarized Enriques surfaces.- Brendan Hassett and Yuri Tschinkel : Extremalrays and automorphisms of holomorphic symplectic varieties.- Gert Heckman and Sander Rieken : An oddpresentation for W(E_6).- S. Katz, A.Klemm, and R. Pandharipande, with an appendix by R. P. Thomas : On themotivic stable pairs invariants of K3 surfaces.- Shigeyuki Kondö : The Igusa quartic and Borcherds products.- Christian Liedtke : Lectures onsupersingular K3 surfaces and the crystalline Torelli theorem.- Daisuke Matsushita : On deformations ofLagrangian fibrations.- G. Oberdieck andR. Pandharipande : Curve counting on K3 x E, the Igusa cusp form X_10, anddescendent integration.- Ke

iji Oguiso :Simple abelian varieties and primitive automorphisms of null entropy ofsurfaces.- Ichiro Shimada : Theautomorphism groups of certain singular K3 surfaces and an Enriques surface.- Alessandro Verra : Geometry of genus 8Nikulin surfaces and rationality of their moduli.- Claire Voisin : Remarks and questions on coisotropic subvarietiesand 0-cycles of hyper-Kähler varieties.
Introduction vii
The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface
1(16)
Samuel Boissiere
Andrea Cattaneo
Marc Nieper-Wisskirchen
Alessandra Sarti
Orbital counting of curves on algebraic surfaces and sphere packings
17(38)
Igor Dolgachev
Moduli of polarized Enriques surfaces
55(18)
V. Gritsenko
K. Hulek
Extremal rays and automorphisms of holomorphic symplectic varieties
73(24)
Brendan Hassett
Yuri Tschinkel
An odd presentation for W (E6)
97(14)
Gert Heckman
Sander Rieken
On the motivic stable pairs invariants of K3 surfaces
111(36)
S. Katz
A. Klemm
R. Pandharipande
R. P. Thomas
The Igusa quartic and Borcherds products
147(24)
Shigeyuki Kondo
Lectures on supersingular K3 surfaces and the crystalline Torelli theorem
171(66)
Christian Liedtke
On deformations of Lagrangian fibrations
237(8)
Daisuke Matsushita
Curve counting on K3 x E, the Igusa cusp form X10, and descendent integration
245(34)
G. Oberdieck
R. Pandharipande
Simple abelian varieties and primitive automorphisms of null entropy of surfaces
279(18)
Keiji Oguiso
The automorphism groups of certain singular K3 surfaces and an Enriques surface
297(48)
Ichiro Shimada
Geometry of genus 8 Nikulin surfaces and rationality of their moduli
345(20)
Alessandro Verra
Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kahler varieties
365
Claire Voisin