Atnaujinkite slapukų nuostatas

El. knyga: Kaleidoscopic View of Graph Colorings

  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 30-Mar-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319305189
  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 30-Mar-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319305189

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book describes kaleidoscopic topics that have developedin the area of graph colorings. Unifying current material on graph coloring,this book describes current information on vertex and edge colorings in graphtheory, including harmonious colorings, majestic colorings, kaleidoscopiccolorings and binomial colorings.Recently there have been a number of breakthroughs in vertex coloringsthat give rise to other colorings in a graph, such as graceful labelings ofgraphs that have been reconsidered under the language of colorings.The topics presented in this book include sample detailedproofs and illustrations, which depicts elements that are often overlooked.This book is ideal for graduate students and researchers in graph theory, as itcovers a broad range of topics and makes connections between recentdevelopments and well-known areas in graph theory.

1. Introduction.- 2. Binomial Edge Colorings.- 3. Kaleidoscopic Edge Colorings.- 4. Graceful Vertex Colorings.- 5.Harmonious Vertex Colorings.- 6. A Map Coloring Problem.- 7. Set Colorings.- 8. Multiset Colorings.- 9. Metric Colorings.- 10. Sigma Colorings.- 11. Modular Colorings.- 12. A Banquet Seating Problem.- 13. Irregular Colorings.- 14. Recognizable Colorings.- References.- Index.

Recenzijos

This book has the unique goal of covering the non-typical types of colorings in hopes of leading to new research and, in effect, providing a useful text with problems approachable for undergraduate students and up. The author provides many short proofs that illustrate the different types of proof techniques used to solve these types of graph theory problems. Additionally, the author has included many open questions to show some direction in which to take one's research. (John Asplund, Mathematical Reviews, November, 2016)

1 Introduction
1(6)
1.1 Graph Colorings
1(1)
1.2 Proper Vertex Colorings
2(2)
1.3 Proper Edge Colorings
4(1)
1.4 Eulerian Graphs and Digraphs
5(1)
1.5 A Theorem from Discrete Mathematics
5(2)
2 Binomial Edge Colorings
7(12)
2.1 Strong Edge Colorings
7(2)
2.2 Proper k-Binomial-Colorable Graphs
9(5)
2.3 Unrestricted k-Binomial-Colorable Graphs
14(5)
3 Kaleidoscopic Edge Colorings
19(16)
3.1 Introduction
19(2)
3.2 Complete Kaleidoscopes
21(6)
3.3 3-Kaleidoscopes of Maximum Order
27(5)
3.4 Majestic Edge Colorings
32(3)
4 Graceful Vertex Colorings
35(18)
4.1 Graceful Labelings
35(1)
4.2 The Graceful Chromatic Number of a Graph
36(4)
4.3 Graceful Chromatic Numbers of Some Well-Known Graphs
40(5)
4.4 The Graceful Chromatic Numbers of Trees
45(8)
5 Harmonious Vertex Colorings
53(10)
5.1 Harmonious Labelings
53(2)
5.2 Harmonious Colorings
55(4)
5.3 Harmonic Colorings
59(4)
6 A Map Coloring Problem
63(4)
6.1 A New Look at Map Colorings
63(4)
7 Set Colorings
67(8)
7.1 Set Chromatic Number
67(2)
7.2 The Set Chromatic Numbers of Some Classes of Graphs
69(2)
7.3 Lower Bounds for the Set Chromatic Number
71(4)
8 Multiset Colorings
75(10)
8.1 Multiset Chromatic Number
75(2)
8.2 Complete Multipartite Graphs
77(2)
8.3 Graphs with Prescribed Order and Multiset Chromatic Number
79(2)
8.4 Multiset Colorings Versus Set Colorings
81(4)
9 Metric Colorings
85(10)
9.1 Metric Chromatic Number
85(1)
9.2 Graphs with Prescribed Order and Metric Chromatic Number
86(2)
9.3 Bounds for the Metric Chromatic Number of a Graph
88(2)
9.4 Metric Colorings Versus Other Colorings
90(5)
10 Sigma Colorings
95(8)
10.1 Sigma Chromatic Number
95(2)
10.2 Sigma Colorings Versus Multiset Colorings
97(1)
10.3 Sigma Value and Range
98(3)
10.4 Four Colorings Problems
101(2)
11 Modular Colorings
103(14)
11.1 A Checkerboard Problem
103(2)
11.2 Modular Colorings
105(5)
11.3 A Lights Out Problem
110(1)
11.4 Closed Modular Colorings
111(6)
12 A Banquet Seating Problem
117(8)
12.1 Seating Students at a Circular Table
117(3)
12.2 Modeling the Seating Problem by a Graph Coloring Problem
120(5)
13 Irregular Colorings
125(12)
13.1 Irregular Chromatic Number
125(3)
13.2 De Bruijn Sequences and Digraphs
128(2)
13.3 The Irregular Chromatic Numbers of Cycles
130(3)
13.4 Nordhaus-Gaddum Inequalities
133(4)
14 Recognizable Colorings
137(14)
14.1 The Recognition Numbers of Graphs
137(3)
14.2 Complete Multipartite Graphs
140(3)
14.3 Graphs with Prescribed Order and Recognition Number
143(1)
14.4 Recognizable Colorings of Cycles and Paths
144(3)
14.5 Recognizable Colorings of Trees
147(4)
References 151(4)
Index 155