|
|
1 | (6) |
|
|
1 | (1) |
|
1.2 Proper Vertex Colorings |
|
|
2 | (2) |
|
1.3 Proper Edge Colorings |
|
|
4 | (1) |
|
1.4 Eulerian Graphs and Digraphs |
|
|
5 | (1) |
|
1.5 A Theorem from Discrete Mathematics |
|
|
5 | (2) |
|
2 Binomial Edge Colorings |
|
|
7 | (12) |
|
2.1 Strong Edge Colorings |
|
|
7 | (2) |
|
2.2 Proper k-Binomial-Colorable Graphs |
|
|
9 | (5) |
|
2.3 Unrestricted k-Binomial-Colorable Graphs |
|
|
14 | (5) |
|
3 Kaleidoscopic Edge Colorings |
|
|
19 | (16) |
|
|
19 | (2) |
|
3.2 Complete Kaleidoscopes |
|
|
21 | (6) |
|
3.3 3-Kaleidoscopes of Maximum Order |
|
|
27 | (5) |
|
3.4 Majestic Edge Colorings |
|
|
32 | (3) |
|
4 Graceful Vertex Colorings |
|
|
35 | (18) |
|
|
35 | (1) |
|
4.2 The Graceful Chromatic Number of a Graph |
|
|
36 | (4) |
|
4.3 Graceful Chromatic Numbers of Some Well-Known Graphs |
|
|
40 | (5) |
|
4.4 The Graceful Chromatic Numbers of Trees |
|
|
45 | (8) |
|
5 Harmonious Vertex Colorings |
|
|
53 | (10) |
|
|
53 | (2) |
|
|
55 | (4) |
|
|
59 | (4) |
|
|
63 | (4) |
|
6.1 A New Look at Map Colorings |
|
|
63 | (4) |
|
|
67 | (8) |
|
|
67 | (2) |
|
7.2 The Set Chromatic Numbers of Some Classes of Graphs |
|
|
69 | (2) |
|
7.3 Lower Bounds for the Set Chromatic Number |
|
|
71 | (4) |
|
|
75 | (10) |
|
8.1 Multiset Chromatic Number |
|
|
75 | (2) |
|
8.2 Complete Multipartite Graphs |
|
|
77 | (2) |
|
8.3 Graphs with Prescribed Order and Multiset Chromatic Number |
|
|
79 | (2) |
|
8.4 Multiset Colorings Versus Set Colorings |
|
|
81 | (4) |
|
|
85 | (10) |
|
9.1 Metric Chromatic Number |
|
|
85 | (1) |
|
9.2 Graphs with Prescribed Order and Metric Chromatic Number |
|
|
86 | (2) |
|
9.3 Bounds for the Metric Chromatic Number of a Graph |
|
|
88 | (2) |
|
9.4 Metric Colorings Versus Other Colorings |
|
|
90 | (5) |
|
|
95 | (8) |
|
10.1 Sigma Chromatic Number |
|
|
95 | (2) |
|
10.2 Sigma Colorings Versus Multiset Colorings |
|
|
97 | (1) |
|
10.3 Sigma Value and Range |
|
|
98 | (3) |
|
10.4 Four Colorings Problems |
|
|
101 | (2) |
|
|
103 | (14) |
|
11.1 A Checkerboard Problem |
|
|
103 | (2) |
|
|
105 | (5) |
|
11.3 A Lights Out Problem |
|
|
110 | (1) |
|
11.4 Closed Modular Colorings |
|
|
111 | (6) |
|
12 A Banquet Seating Problem |
|
|
117 | (8) |
|
12.1 Seating Students at a Circular Table |
|
|
117 | (3) |
|
12.2 Modeling the Seating Problem by a Graph Coloring Problem |
|
|
120 | (5) |
|
|
125 | (12) |
|
13.1 Irregular Chromatic Number |
|
|
125 | (3) |
|
13.2 De Bruijn Sequences and Digraphs |
|
|
128 | (2) |
|
13.3 The Irregular Chromatic Numbers of Cycles |
|
|
130 | (3) |
|
13.4 Nordhaus-Gaddum Inequalities |
|
|
133 | (4) |
|
14 Recognizable Colorings |
|
|
137 | (14) |
|
14.1 The Recognition Numbers of Graphs |
|
|
137 | (3) |
|
14.2 Complete Multipartite Graphs |
|
|
140 | (3) |
|
14.3 Graphs with Prescribed Order and Recognition Number |
|
|
143 | (1) |
|
14.4 Recognizable Colorings of Cycles and Paths |
|
|
144 | (3) |
|
14.5 Recognizable Colorings of Trees |
|
|
147 | (4) |
References |
|
151 | (4) |
Index |
|
155 | |