Atnaujinkite slapukų nuostatas

El. knyga: L2 Approaches in Several Complex Variables: Development of Oka-Cartan Theory by L2 Estimates for the d-bar Operator

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Highlighted are the new preciseresults on the Lp2s extension of holomorphic functions. In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the Lp2s method of solving the delta-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The Lp2s extension theorem with an optimal constant is included, obtained recently by Z. B±ocki and by Q.-A. Guan and X.-Y. Zhou separately. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, and Guan-Zhou. Most of these results are obtained by the Lp2s method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the Lp2s method obtained during these 15 years --

Part I Holomorphic Functions and Complex Spaces.- Convexity Notions.-
Complex Manifolds.- Classical Questions of Several Complex Variables.- Part
II The Method of L² Estimates.- Basics of Hilb

ert Space Theory.- Harmonic Forms.- Vanishing Theorems.- Finiteness
Theorems.- Notes on Complete Kahler Domains (= CKDs).- Part III L² Variant of
Oka-Cartan Theory.- Extension Theorems.- Division Theorems.- Multiplier
Ideals.- Part IV Bergman Kernels.- The Bergman Kernel and Metric.- Bergman
Spaces and Associated Kernels.- Sequences of Bergman Kernels.- Parameter
Dependence.- Part V L² Approaches to Holomorphic Foliations.- Holomorphic
Foliation and Stable Sets.- L² Method Applied to Levi Flat Hypersurfaces.-
LFHs in Tori and Hopf Surfaces.